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Everyone should read the sections on AREAS and
VOLUMES. These topics are pasic. Work out the problems
Xourself as you follow them in the text. Fill in the
missing steps. After you finish each section, turn to
the book used in your course and start doing homework
problems. The only way you can really learn this
material is to SOLVE LOTS OF PROBLEMS. Refer back to
the module as needed. See your tutor or TA if you get
stuck.
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of the remaining topics in the module. The basic formulas
are given in each section along with a common sense
derivation. It's a lot easier to remember the formulas 1f
you have an intuitive understanding of why they are true.
Also, you'll make fewer mistakes in applying them. The
module provides easy reading for understanding them. The
textbook in the course provides a more detailed discussion.
If you're having trouble reading the vook, read the module
first, then tackle the book.

The module should provide a quick review for studylng

for exams.
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INTRODUCTION

The integral sign f stands for the S in the word
"summacion." Integrals add things up. We will use an
"yntultive” approach, using differentials { dx and dy ).
Think of dx and dy as very short distances in the x and ¥
directioens, respectively. So, 1f I add up all the dx's

petween x=1 and x=3, 1 should get the distance from 1 to 3

idx-xl-3-1-2
1

Likewise,

3 3
‘gdy « yl = 3-(-20 = 5, which 1s the total

distance from y=-2 to y=3.

(WARNING: Rememder, [dx 1s really a 1imit, and if you
want to be absolutely sure that differentials are giving you
the right answer, you have to pfove 1t with 1limits in a given
problem. In fact, sometimes, in complex problems, differentials
will give you the Wrong answer if you happen to view the
problem wrong. But this won't happen in freshman calculus as
long as you stick to the methods discussed in this module and
in your book. So now, ignore the warning, because scientists

and engineers use differentials all the time to get the right
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answers. They are easy to use and visualize. Just remeumber

that, if you get around to taking any “nigher" mathematics,

there is more to it which you can learn about then.)

I. AREA UNDER A CURVE

Suppose I want to find the area shown below:

S

e
\1’1:3////1
To 2

We are going to use an integral to add up the "areas”

of all the vertical lines shown:

]

o Y

Look at a typical vertical line:

o
I D P 3
4 =
o x 2 *

We are going to view it as a "rectangle" with base of

length dx and height of length y. So, the area of the
rectangle 1s (height)(vase) = ydx. I want to add up the "areas”
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We could have solved the last problem using vertical

of all the lines between x=0 and x=2, so:
lines instead:

2 2
B R R S G TR 1
=%
0 4 3 e u-y
WS - 7
Suppose I want the area below instead: ) (""3 t;;l .
. " '
° 1
t
! -
1
/.‘:L ,
W 2 2 0 3,2
° 3 A= £ (h-y)dx = g (4-x)dx = Ux - x|
3 o0
Then I might want to add up all Zhe horizontal lines shown = (8 -8) - (0~_ o = 16
between y=0 and y = 7. Use y = x° at x=2 to find y=4. Look 3 3
at a typical line:
N
Yy - Y=x * Also, we could have done the first problem with
/\_/\/\ e S .
A:l\ - (“ﬂ [-’__::3} 4y horizontal lines:
~ o T T~ e . 7/
-]

Its "area" is xdy.

So, A

A = &x dy = imdy

3
5 i
= = 2(8) -0 = 16
“Lé b, 3 3
2

Notice you have to solve for x in rms of y in the original

equation so there will be only y's in integral. 4 4 % 4
A= (2-x)dy = g (2 Wy ay = -
That 1s: y = xa. Solve for x: get x = Vy. l[; 2y “g— lo
K

*
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Remember, it 1is important to be able to exploit the
geometry of the pictures you draw. For instance, 8 typical
point (x,y) on the curve y=x between x=0 and x=2 gives rise
to many horizontal and vertical distances which you can
calculate in terms of X and y and use in dx and dy integrals.
Make sure you can 1abel the distances on the picture below:

y=x
2 x =5

) (x4)

Y-y \
-4
= q_,?-
Y
%= I = 3’.?—.?
Y =
[ \___’\/——\J 1

-6

So how do you know which lines to use: horizontal or
vertical. You will gradually develop a feeling for this as
you do more and more practice problems. Sometimes one way 1is
easier; sometimes the other way 1is impossible.

For instance: Find the area trapped between x = 0 and
x=3 -2
You have x in terms of ¥ and you don't want to think about
trying to get ¥y in terms of x. So, you're going fo use
distances measured in x's, that 1is, horizontal lines.
First, DRAW A PICTURE. Getting a good plcture is half the
battle and will prevent 90 per cent of the mistakes.
Set x = O to find the roots along the y-axiss:
x=y -2yl =0
yiy-20= 0
y=0andy= 2
Since y8 > 2y7 tor large lyl, there will be large positive
%x's on the graph, but not large negative x's. So you know the

graph "opens" to the right. This 1is enough for a rough sketch:
1/
4

<

)

The "area" of the typical line is seen to be xdy, so

2

- 2-2
° 9
The answer, by the way, 1s negative, since all the x-distances
we added up were negative. If you want a positive area, then

2 2
A = lgxdy = ll;(:ra-’c’y7\clnr - y_g-_ggﬁl
9

you have to take the absolute value of your answer.
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Here's a typical exam problem: Find the area bounded by
x - y2 + 3 =0 and x - 2y = 0.

DRAW FIRST:

(30
(¢,3)
(-2
?ﬁ"\“"_“"

Here 1s the reasoning behind the drawing. x = y2 - 3 1is
a parabola opening right with roots: x = y2 -3=0
(y+$3)(y-1 =0
y=3 and y=1{3 .
y = x is a straight line through the origin with positive

slope. 2 Set the two curves equal and calculate the intersection

points.
Let's consider both horizontal and vertical lines:

~

(‘l'-l)

(‘ll) (4,3)

Notice that the vertical lines are of two kinds. The ones
on the left of the picture connect curve to curve, whereas the
ones on the right connect curve to line.. The horlzontal lines
are of only one kind, so we chose them for simplicity.

-8~

What is the length of the typical horizontal line?
Horizontal length = (right minus left) = (line - curve) =
2y - (y2 -~ 3), as can be seen from the plcture below:

solving for x:

Thus, using an integral to add up all the lines between
y = -1 and y = 3, we have

A = fey-(yQ-S)dy = 312- x3 + 3y?
-1 -
2 3
m(32-33433) - (1+ 1 -3 = 108
3 3 3

(You might try to work this problem using vertical lines.
1t can be done.)

Remember to THINK before you dive into any solution. For
instance, you can save a lot of time by noticing the geometry
of the following two problems:

+T

1) Evaluate fgélnx dx. If you draw the curve you can
-

z
see that the answer 1s zero by symmetry. Areas above the

x-axls cancel out areas below the x-axis. ""“‘*~\*
‘ % '/q

/I

+h /3 )
2) Evaluate {u 16-x° dx. This is just a semicircle of

B N
N Y

radius 4, S0 A = T"gu!e
2




11. VOLUMES -9-

Now let's do some yolumes. Suppose our curve is revolved

around the x-axis to give the volume shown below:

This disc has radius = y and height = dx, as shown.
Volume of this disc = w(radius)a(height\ - vyzdx.
Adding up the volumes of all the discs for all the vertical

lines between x=0 and x=2 glves:

2 2 2
v = gwygdx = gw(1232dx = Ig?l = 327
5 0 5

~10=-
There 1s another way to get this volume, by notlcing that

the horizontal lines sweep out a shell, (a hollow eylinder).
The great number of shells produced by all the horizontal lines
then fit inside each other ( somewhat like Chilnese boxes) to

produce the volume.

9

- — - -

- - -

To figure out the "volume" of the
shell, think of 1t as a tin can only
dy thick with no top or bottom. Cut
it and unroll 1t as shown.

Now, 1it's an ordinary
parallelepiped with volume =
( 1ength) (width)(he 1ght) =
2w(radius\(width\(height\ -
2ry( 2-x)dy.

l -
4 ‘J
Vv = ggvy(2-X)dy
I dJé‘
= ‘(;?"Y( 2-[¥)4y__(F111 1n
@______,////‘—— missing steps]
= igl, the same answer as before 2y
5 hl
,L,‘f
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For revoelulions around the x-axis, we can summarize our

volume formulas:

DISCS v = [n(radius) 2ax

dy raéws
-
!

SHELLS Vv = [er(radius}(he ight)dy

Ve ey

Which is casier? Discs or shells? It depends on the problem.
Shells may have scemed more complicated than discs in the

problem we Just did, but let's try something different:

We continuc to look at our same area:

But now we revolve it around the y-axis.

~12-

A typical vertical line (below) revolves to form a shell

with the dimensions shown:

=) - \"‘ﬂ\"* =4

radws = X

2 2
Vo= t{;zrr( radius){height)dx = £2trxydx
2 5 B 2
= 2w£x(x Yax = 2mx'] = 2r{(16' = 8w
y © 4

So, shells seem easier when revolving around the y-axis.
But remember our previous problem involving x = y8 - 2y7, in
which y was not avallable in terms of x. There, in order 20
revolve around the y-axis, we could not have used shells
because there would be no way to substitute the height into
the dx integral. Discs would have to be used with radius x

in a dy integral. 2

<=

!
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We can also do the problem below, which we've already done
except I have to subtract small discs

with shells, with discs,
from big discs to get rid of the hole in the volumes

R d
@4

(A disc with a hole in it is sometimes called a washer.)

4 2 b 2
vV = gw(big radius) “dy - gw(small radius) “dy

= iw(z\gdy - iw({?\edy

4 4
e rlby] - my?l = 16v - 3(16) = Br, the same
¢} 20 ansvwer

We can now summarize our volume formulas for revolutions

around the y-axis:

V = Iw(radius)edy

DISCS
“ ‘
el
kc|\d
SHELLS 3 v = fon( radius) (height}dx
L redws

-14 -
We will now revolve the following area around several

different axes:
2,

FA~4
L}
*

T3 T

PROBLEM: Revolve around the line y = ~1.
(59

Y ' Wy

DISCS o --
-1

<
i

2 2 2 2
{r(big radius) “dx - {f(small radius) “dax

]

2 2
{w( uy lax - {fr( 2)%ax
{From now on, we will

2 2.2 2
{w(1+x Yfdx - {W(u)dx
only set up the
integrals.
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w4+

SHELLS 5

-1

4 i
vV = {er( radius)(height)ldy = {QW(y+l\(2-x\dy
n

- {27r(y+1)( 2-{yay

PROBLEM: Revolve the same area around the line x = 5.(Now you
draw.)

i 2 4o
ans = {w(s-{}‘) ay - {w( 3Y°dy  DISCS

2
= {zr(s-x)( x2-1)dx SHELLS

PROBLEM: Revolve the same area around the line y = 6.

2 2
ans = {W(S)de - {v(ﬁ-xe\dx DISCS

I
= {211( 6-yV(2-{ylay SHELLS

~16-
MORE VOLUME PROBLEMS

Suppose the area shown below is the base of a solid:

2z
=

tﬁ

P 2

Suppose that, when you slice this solid with a plane
perpendicular to the x-axis, you get a square of side y:

.

il
(uy)_ ¢ R (/rJ/\
TTr T~

St
4%
The ‘volume of each slice = ( length)(width)(height)
= ygdx. If we add up all the slices between x=0 and x=2,

we get the total volume of the solld:

2 2 2
vV = gyzdx = g(xz)edx = 5?‘0 = 32
5

\n

Suppose each slice was a semicircle:

() P
b

2 ) 2 2 12 2 2
vV = éﬂfradiusl ax = gwgﬁg dx = £w§ = %




17~

The slice might be any shape for which the area can be

ecalculated as a function of y. Slices taken perpendicular to
the y-axis can also be used to define the solid, in which

case the cross-sectional area would be a function of x and

you would use a dy integral to calculate the volume.

1II. ARC LENGTH 3
e e————— $‘l-

Qﬂ’

]
1)
[}
t
i
]
:
]
1)
i

-—fe -

J 3
ou,want to calculate the length of the above
" short distance along the

in terms of dx and dy:

Suppose ¥
curve. Then L = [ds, where ds is

curve, " which we shall calculate

s

By Pythagoras dx2 + dy2 - d32

ds = dx2 + dy2 "’ “\{multlply
top and
= [{dx + d 2)(dx2) boktom by
L—‘*—';;ﬁ——“—*"- dx“]

-18-

Our problem is now solved by addtng up d11 the ds's
’
’

between x=1 and x=3: (y = x; 80 %& -I}) s
x
x
- irr'%jd

The formula
looks a little 3

different 3
if we do the
same problem '
with a dy
integral: A
P {multiply top
2 L’ ang bottom by
dg = { 1 0+ (dx\ dy - dy, instead of
y ax”}
2 -1
Now, since y = X » X ==y3, %x_-%yg,

y

3
L={1+gy dy ~o
(You haven't been

told how to work
out this integral
yet.)

{Helpful Hint: [J1 + (mess)2 is often hard to evaluate in

arc length problems. So, the (mess)2 1g often rigged to
2

Suppose (meaa)2 = (x°- 1
L

simplify the arithmetic on exams.
for instance. Then 1 + (mess)2 x?
a1+ (xt -1+ 1) = Hae1e 1 o= (P18
165" 16x* o
Now, ‘1 + (mess)2 = x2 + ;? . The root is gone and the
Lhx

integral is easy.)
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3

If the curve is parametrized (For example, our y=x‘§ can
be parametrized xzte, y=t3 as t goes from 1 to f§3, then

there is yet another formula for ds:

2
s = (@ (gh

t

In our problem, dx = 2t and %% = 3t2, so:
at

L = 4t® + 9% dat

Y e
{

EXAM PROBLEM: Derive the formula for the circumference of
a circle of radius R.

P
N

Parametrize the circle in terms of w

X = Rcosa dx = =-Rsina
s
y = Rsina dy = Rcosa
da
o0 ager
o T ]
L = zgj(—ﬂsina)z + (Rcosct)2 da
. en N
= g Jrkz(sin2a + coseu) da
2T e
=£R da = Ral = 2R
0

IV. SURFACE ARFEA -20-

Let's revolve the curve y=x2 around the x-axis. This time
we ask for the surface area of the object obtained. Notice
that the obJect is hollow in this case.

»

Consider what happens when a typical ds is revolved:

The surface area of the frustrum obtained =
2n(radius)(slant height) = 2w{radius)ds. Here, the radius
is y. Using the integral to add up all the frustrums for
all the ds's between x=0 and x=2, we have the total

surface area:

2
SA = k[;exrycls y = x2
.2 dy _
= £2""2 1+ (2x)° dx I -
" e

-
-~
~— -

The general formula is | SA = fen(radius)ds
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Now, revolve the same curve around the I-axis:

s
b‘.n\

kY

3
SA = jzw(radius)ds’ - ézw(x)ds

4
= gzw(liﬂ J1+1 ay
oy
‘l
{Remember that the hs in a dy integral
involves a(%z)ﬁsince x={y, dx= 1 __ -
7 R iy 27

V. HYDROSTATIC PRESSURE

A fluld exerts a pressure at a depth h equal to
(density)(depth) = ph, where p 1s the density of the fluid.

Force = (pressure)(area). So, for instance, the force
on the bottom of the can full of water shown below =
(pressure){area) = (density}(depth)(w)(radius)2 = w(S)Tr(3)2
= U45mw, where w is the density of water.

-22-

But what about the force on the sides of the can? The
pressure 1is different at different depths. The forces on the
sides will be different at all the many different values of
h between h=0 and h=5. We need an integral to add them all up.

Choose a typlcal y between y=0 and y=5 (below). Then the
depth at that y is (5-y) and the pressure there 1s p(5;y).
The fluid at this depth exerts a force on aof
width dy. Call the area of this circulag/afea dA, for
differential area. N

\ ' )14y -
—

radivsg
=3

da = 2w(radius)dy
= zn(3)dy

The force on the sides at this depth 1s (pressure)(area)
= p(S-y)dA. Adding up all the forces from bottom to top, we

have: 5
total force = & p(5~-ylda = i p(5-y)2r(3)dy

= Gﬂrpi(S—y) dy

The general formula 1s F = f(density)(depth)dA
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PROBLEM: Find the total force exerted by a lake 18 ft. deep

on a dam of the dimensions shown.

\8.

Consider a typical y between O and 18 (below):
Note that it doesn't matter how long the lake is, only how

deep it 1s at the dam.

1%

LT T~ x z\g-
=, Ny, 3
*9‘5\ 'j

The depth at y is 18-y. The pressure = (density)(depth)

= w(18-y).dA = 2xdy. Since y = %Qx, x = %g- So, dA = 2(%§)dy-

18
g(density)(depth)dA

g
[

1 8-y)(2)(5y)d
gw(l -y %g y

By the way, w = 62.5 1b/}t3‘

V1.

ol -

WORK

Work = {force)(distance).

S0, if a brick falls 17 ft., then gravity does 170
ft-1bs of work. If you pull a brick 17 ft. straight up with
a rope, then you do 170 ft-1lbs of work against the force of
gravity.

The work 1s easy to calculate in these problems because
the force of gravity can be assumed to be constant over short
distances. What happens if the force varies with position?

For instance, suppose a 10 1b. bag of sand 1s raised 17

feet, but sand is leaking out of it at the constant rate of

% 1b. per foot. When the bag is located at any y between O and

17 (see below), it weighs 10 - y 1bs. A force of 10 - y 1lbs.
§ &

is required to railse the bag the short distance dy:

u::}dﬂ

1l

The work required to raise the bag dy = (force){distance)

= (10 - &)dy.

The total work to raise the bag through every dy between

y=0g8nd y = 17 1is

17 17
Work = £ {force)(distance) = £ (lo—g)dy

"y
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PROBLEM: Revolve y=x2 around the y-axis to get a bowl, Fill

it with water and calculate the work required to pump the

water to a point 6 feet above the top of the bowl.

.,Sz‘l?-

-]

e 3

Look at a disc of water at a typical y between O and b:

“ -y

This disc must be raised 10-y feet. .-
s
Work to raise disc = (distance){weight)

= (10-y)(wn{ radius) 2ay)

= (10-y)(wrx2dy) = (10-y)(wrydy)

Work to raise all the discs between y=0 and yolt:

4
W o= g(lo-y)wrydy

.~ —~{welght =
(density)
x { volume)

-26-

yII. CENTER OF MASS PROBLEMS

Consider a mass m located a distance x from an axis y:

had

l"\f"

Then its moment around the y-axis 1s defined to be
(mass)(distance) = mx.

If there are several masses m, (1 =1,....,n) located
at several distances x,; (1 = 1,.....,n), then the center of

mass of the system is defined to be:

n
X = gum of moments = Dmx,
" total weight n
omy

There is a similar number ¥ defined for distances y,

to the x-axis. Simply replace the xi's by yi's above.

5
Lowmi

%

So, (X,J) would be the x and y coordinates of the
center of mass in two dimensions.

In three dimensions, the point (X,¥,Z) is defined

analagously, using the coordinates (xi.yi,zi) of the location

of each mass my .
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You can now find the center of mass of any finlte
collection of point masses. But how can we find it for a
continous object like a wire or a plate which contains an
infinite number of points? Answer: divide the object up
into an infinite number of dm's (differential masses) and

use an j instead of a ¥ in the above formulas.

EXAMPLE:
Find the center of mass of the plate of uniform

density shown below:

8
W

o}

First, divide the plate into small pieces. A typical

one is shown below: (called dm for differential mass)

«9)

}’ [The words
ol T Ty uniform and
dm” centrold
Toply p=1.]

weight of small piece = dm = (density)(area)
- ((yax) = x“ax

In order to calculate the moment for this dm, we need

to know how far it is from the x- and y-axes. We will assume

that the mass of the dm is concentrated at}its center: (%, i).

-08 -

(This is the last piece of notatlon you have to learn for

center of mass, so hang in there.)

(X, ¥) is the midpoint of the dm:
Y= X

(x4)
&)

In this case, X = x and §¥ = % (half way up).

Since the dm is viewed as concentrated at (%, ¥), then
X is the distance from dm to the y-axis and ¥ 1s the distance

to the x-axis:

SN ;(73\
$9

ol 1

So, the moment about y is (distance)(mass) = Xdm and the

moment about x = ydm, and the formulas for center of mass are:

X = [ Xdm ¥ = [ ¥am Z = [ Zdm

[ am : J dm [ am

These formulas work for all center of mass problems
in 1, 2, and 3 dimensions as long as (X,¥,%)1is the center

of mass of the typical dm.
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We now finish our example:

o1
X = xdm =
b
I 1
fe=
- 1
¥ = g Jim = I g?pdA = I x2(x2)dx =3
10
[ | J=
g m pdA x"dx

Let's do the same problem with different dm's. (You can
use any dm's which are uniform in density, so that the %, 5, (%)

will be in the center.)

= ()

-x

M/\ Py
C::::::q}éj <:\

Tl - {midpoint

T dm formulal

_ 1 1 1
¥ = g Xdm = !g %:_l_( l-x)dy = 4; 1+!ﬂ1_mdy = %

1 1

{) dm "(; (1-x)dy l (1-Hay

(You ean do ¥.)

~30~

PROBLEM: Suppose you had a wire of uniform density:

Oﬁ

" ¥ind its center of mass.

Since mass = (density)(length), dm = pds in the case

of a wire. And (%)= (x¥):
,i\% ‘.V‘l"&\

ds

4 3

‘ 3
3
X = ix‘ifz_z;a‘dx ¥ = {yll + 4x° ax = i x2/;~:‘;;3dx
P

i ‘1 + sz dx ffiﬂ:ﬂ;;agx f] 1+ Rxg dx
1 1

(%,7) is not on the wire, in this case.

-

[Note: In 3-D problems, there will of course be a z
and the dm's will themselves be 3-D. For instance, in order
to find the center of mass of a cone, the dm's would be
frustrums and dm = pav.]

[ Sometimes symmetry can

be used. A cone is
symmetric about the

z-axis, so X and ¥ are

zero. |
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FXAM PROBLEM: Find the center of mass of a plate bounded
al
by the curves x-y“+3=0 and x-2y=0 if its density is

proportional to distance from the x-axis.
(p = ky. The density is not 1 in this problem.)

We drew this plate earlier in the module:

»6‘ /
(¢.3)

-2 )

We must choose horizontal dm's so that y, and therefore
the density, will remain uniform. Then (X,¥) will be the

midpoint: 1%'(313)

o
,:GD} 4y
’ %)

midpoint = right + left = line + curve = 2y + y2 -3
2 2 2

Plug
in =Yy

pda = (ky)(2y - (y2-3)ay)

X = }')‘c’dm ¥y = fsr‘dm [Note: the
~—p -1 =1 constant k

3 will cancel.]
| dm f dm



LSC Mathematics Learning Module VIII
SURFACE AREA

iv.

EXERCISES (WITH SOLUTIONS)

compiled by Mathematics Support Capsules, 8/81 9. Find the surface area swept out by rotating the curve y

for 0 <y < 2w about the line y = :% . {set up the integral only.)

= CO0S X

1. AREAS

1. Find the area bounded by the parabola y = 6»x—x2 and the x-axis. 10. Find the surface area of the shape formed by rotat
of y = /x around the x-=- axis for 1 < x < 6.

ing the graph

2. Find the area bounded by the x-axis, the graph y = xZ-2x  and the
lines x = -1 and x = 4.
s Support Center Handout on Bridging

For more problems, see Mathematic
Calculus and

3. Find the area between the curves
111-191, or go direcﬁyto Thomas and Finney,

2 the Gap:
- -2;*‘ Analytic Geometry.
y = {x-1)
11. VOLUMES
4. A solid has as its base the region between the parabolas x = y2
and x = -2y2+3. Find its volume when rotated about the x-axis.
5. Find the volume of the solid generated by rotating the graph of y = %
around the x-axis between the points x = 1 and x = 5.
SOLUTIONS:

6. The circle, x2+y2 = az is rotated about the x - axis to form a 1. DRAW

sphere. Then a hole of diameter a is bored through the center of the
sphere. Find the remaining volume. to find x fintercepts,

factor:
2
= G-x-~
111. ARC LENGTH y x-x
y = (3+x){(2-x) } .
7. Find the length of the curve y = 0 when x = -3,2 -3 , 2
y = %(xz,g)3/2 for -2 < x < 3 So, using vertical lines, we have [ y dx
£x< ! -3

2 2 342
2 X
8. Set up the integral for the length of the portion of the circle / 3(5-X‘x Ydx = 6x '%T"TT] ; = 20 5/6

x2+y2 =4 for -1 <yz2 1.
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2. DRAW ' 3. DRAW '
to find the limits of integration

for x, find where the graphs
N intersect.

y = x2 - 2x
(parabol a -
to draw it quickly, put it in

standard form by completing —x2+2x+l = (x-l)z

/ys-x‘,zx.t

=y a (-1

‘x2+2x*1 = x2—2x+l

ax = 2x?

the square
y = (xz—2x+l)—l

y = (x-n%
int t 0 2 2 2 2 using vertical slices, evaluate
x-intercepts: = x“-2x, x° = 2x
X=2 x= 0y Xe =l *x=4q [2
A {(top curve)-(bottom curve)Jdx
The area appears in three separate parts: 0
2 - 2
0 0 3 0 2 2 2
i : = 2 I DY -3 [ [(-x+2x+1)-(x-2x+1)dx = [ (-2x“+4x}dx
Region A: ]_] y dx f_] (x“-2x)dx 5 - X 473 o 0

3 2
-2x 2]
=T*2x = 8/3
2 0
Region B: [ y dx
0

2
2 4 4
[0 0-(x“-2x)dx = -(- 3) = 3

4 4
Region C: [ y dx = | x2-2x = %3
2 2
4,.4.20 28
Total area = §+§+-3' 3 [



4. DRAW
to find pt. of intersection:
yZ = -2y2+3
3y2 =3
y = ¢1
plug in & solve for x
X = 12 x =1
x = -2(1)%+3
x = 1

intersection occurs at (1,1) and (1,-1)

Solve in 2 parts using discs

1 1
A: ny?dx  since x = v2 . [ wx dx = %
0

0

3
B: | ayldx since x = -2y2+
! g2 - - X3
-z - L
5 [ (x-3)dx 77 3x]] w

using disks

5
|yt
1

3 -
3 []ﬂ(i%é)dx

5
. AL o 158
n dx "[1 zdx = w[- Ty = g7

-6~

o\

6. Try and visualize what 1is

N

happening.
Draw a picture.

x2<ky2 = a2 is a circle with

— -

radius = &
diameter = 2a

overhead view —_ /Kq\
::j//f‘ﬂ)

-2l

22—

—— —
— — - —
—— ———

—

Try cylindrical shell method, rotating around the y axis, shells have

thickness dx.
Using the formula
v = [2u(radius)(height)dx
the radius = X Why?
height =2y . x2 +y2 - a
vV = f2n 2x y dx

2

y = Ja%-x

for limits of integration, the shell we are evaluating has an outer

radius of a and an jnner radius of a/2 so Xx varies from a

to a/2

a
v=f anx/al-x? dx
a/2

Yo evaluate, let u = az-xzdu = -2x dx

x=a
-%u"zdu = -%w 372 = —%n(az-x
x=

x=a

a
an | 2y3/2 /a3
x=

VT

L]
2
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7. % - x(xte2) /2 (g%)z = x¥(x%s2) 10. DRAW ° .
3 3 -
ds = [ N1+ (%)2 dx = | z/wx"'«sz dx = [ -/(xin)2 dx (W
3 3 3 /
F 5 ‘
Xz Xrg

dx

8. xS+y° =4 x° = 4-y x = /a-yt - —y(a-y?)~1/2

radius = y = /x

2 1 { Z d d 1 dy,2 1
(d_)()2=_1_2_ dS“!l *4 Zdy dS=IW dx a%g“——- (a%) T ax ds=i ]+_Q—X d.X
-y

6 6 6
SA = | zw/;(/nr‘x Ydx = [‘ zn/;("::‘)dx = [‘ z,,,/,;(____M
1

/8%
9 DRAW 6
= [ nw/Ex+1 dx
¥s cos % 1
i .
h\\\ ///, using u = 4x+1 du = 4 dx, obtain
+ L d
“\'_’/j" h 25
25 )
i 12, . n2 3/2 1
" ve-% A TRETER Tl | R R

Note: bounds in integration change if x =6 v = 4{6)+1 = 25 etc.
rotate the curve

obtain a sideways hourglass

radius = cos x - (- %)

= s
= COoS X+5

ds = + (%%) dx

y = €cos X %% = -sin x (g%)z = sinzx

2n
ds = J1+ sinzx dx SA = | 2n{cos x-f%)(/l+ sinzx)dx |
0 .

. inese Watnematics Swapart Capsules were prepared wader the supervision of Bevarly West, Lecturer, Depactaent of Kathems
Lornell Universtty, lthaca, Mew York 14B5), with ssststence from King Chen, Ken Sardner, Kritten Jachion, Ann Kichel, l::-"'
Okemota, and fundine from tae Exnow Corporation. Reproduction of these ftems for say comaeercial purpose 15 exprestiy
pronidited. The aethors selfcit your cosments, corrections, asé suggestions for feture revision. August, 1983
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This module summarizes, for easy reference, all the basic
TECHNIQUES OF INTEGRATION normally required for Math 112 and 192.
One or two (fairly hard) examples are given for each type. You
should do at least ten éf each type from your text as you learn
each technique. Then, before the exam, do another thirty to
fifty (or more!) chosen at random from the review section at the
end of the chapter. You should develop the ability to declde
quickly which technlique to use on a given problem as well as how
to calculate the answer. Remember, you can always check your
answer by differentiating it to get the function inside the

Integral.

STRATEGY: Basically, solving integrals by these techniques 1s a

mechanical process that doesn't require much cleverness or apti-

tude, but rather more practice and familiarity. So don't blow

the easy part of the course. Math 112 and 192 are hard. 1It's

probably goilng to take everything you've got to get a good grade.

Since integrals are a large part of the first exam, think of them
as a relatively easy opportunity to get a high grade and develop

momentum.

[T} DIFFERENTIATION FORMULAS

Make sure you know all the differentiation formulas perfectly.
If you have a differentiation formula, then (by the Fundamental
Theorem) you have an integral formula. [For instance, 1f yo&
know thét é%(tan x) = secex, then you know that fsech dx =
tan x + C.] All of the techniques that follow are used to simplify

complex integrals so you can use the basic formulas. You must
have the baslc formulas at your fingertips in order to "see"

the simplified form which you are aiming for. If you don't know
which formulas you are required to know, then FIND OUT. This

is one of the few times that straight memorizatlon will help you

at all in mathematics, so DO IT.

[Z] U-SUBSTITUTIONS
Know exactly how to do a U-substitution. This is the basic

technique , which you always want to try first.

EXAMPLE:
fx/x2+1 dx set u = x°+1
. g% = 2x (take derivative)
= jx uﬁ(%§) dx = %% (solve for dx)

(cancel x's)

(bring out constant)

1
=-éfu? du (This is one of the formulas)
3
1wl &“——‘\‘\\\\\‘__ﬁz
=5+ C (Plug in u to get back to x's)
z
3
- lx2)2
= 5(x +1)° + C
CHECK!
3
H5(xP1) %)
- O AP en)
= x°+1



it
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Once you've set u equal to the right thing, all you have
to do is differentiate, plug in, and use the formulas. It's
easy'and leads to few mistakes.

But how do you know what to let u be? A good guideline

is to let u be something so that u's derivative 1s also in

the integral (ignoring constants) and will cancel out (1ike the
x's did above.)

EXAMPLES:
fsingx cos x 4dx set u = sin x
since %% = CcO8 X
2
f t dt set u = 341
Tl since %% = 3t2
EXAMPLE:
e(sin']“Sx)

dx You know é%(sin'15x) =-——l—l5)

J1-25x J1-25%

o q so set u = sin—l(Sx)

e’ /1~ 5 ? u

=] JT""“; then du = _{5)dx
1'257( (5) [‘1_25’(2

= lfeudu
5 dx = Jl-eéx? du
u X =
=5 >
-1
sin “5x
= s 4 C
5

-1
(Notice, you don't get cancellation for I/1-25x2 e(sin SX)dx

with this u-substitution. You end up with f(1-25x2)eudu. You

have to get rid of all the x's or the u-substitution won't work.

e

This integral is much harder. You might try to come back to it
after you've finished the module.)
Sometimes, a u-substitution will work even if the cancella-

tion isn't quite complete:

5

J e at u=t3-
/t3+1 \

du _ 2 \

1 at - ¢ !
“F.5 du !
= lu t _ du \
J _531; at __—53 \
‘ t
1 -3 3 !
= t '
3 Iu du ;

’
/ .
We haven't gotten rid of all the t's, yet, but I can look
/
back at my original substitution and solye for t3 in terms of
- - -
ug £3 = u-1.4 - -

——

Now
1
= % Ju E(u-l)du
L1 L1
= %(fu ﬁdu—Iu 5du)
3 3
D
2 2

1
= 2(t3+1); - 2(t3+1)§ + C
3 3 !

This type of integral is dealt with in more depth later in

the module under rationalizing substitutions.

For now, make sure you have the ordinary u-substitution well

under control before going on. All calculus texts have lots of

u-subgtitution problems.
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[3] Remember sin°x + cos®x = 1

Divide by sin2x > 1 + cot2x = csch

= ;43 - sin t + Zliq(% + % cos 2t)dt)
hr §
t
1y

-sint+8
2

C

t + sin 2t +
or 16

Divide by cosgx - tanzx + 1 = sec2x

Memorize the three "trig-substitutions" and be able to draw

Use these on a) odd powers of sin & cos the A's that go with them
b) any powers of tan & cot (power > 2) Tor e y
c} even powers of sec ¢ cscC .a2—u2 - u=a sin 8 sin 8 = % -
+
EXAMPLE: Zore " vt ;'3
a“+u” > u = a tan @ tan6=§-~_‘_”"__’
j'cscnex dx - for

the derivatives of cot's are

2
csc“'s, which will cancel out in a EXAMPLE:
u-substitution.)

/‘ ~-~... ... (Why have I done this? Because I o 2 " a
u“-a® > u = a sec 8§ sec § = —a
L 2, 2 can change csc's to cot's and a"~ v
= [csc“2x cscex dx ‘m“
.
o

= j'(1+cot22x)csc22x dx

= _fcscgex dx + j'cot22x csc?ox dx ) . - a =3 u=a2a tan 8
3 A/9+llxE = 2x 2x = 3 tan @
_cot2x_cot2x+c 3 2
= —-S—GY dx = 5 sec 8 de
[I_r_‘] Memorize ainzx =—12- - % cos 2x I need /9#‘)(2
2 1 1 .
cos“x = 3 + 3 cos 2x 3 % a6 ,/9+l&x2 = ./9+(3 tan 8)°
sec
Use these on even powers of sin + cos = 2 (slnce ox = 3 tan 8)
3 sec @

EXAMPLE: = ,/9(1+tan®g)
A/9sec"26

= 3 gec 8

fsin“ ; at

= [(sin? §)%at

= -]Q"fsec 8 de {[secxax = tn}secx+tanx| 1s an
1 1 2
= [(3 - 5 cost)at an extra formula which you will
1
) tn|sec g+tan o] + C want to memorize
- [ 3at - Jeos t at + [ cos®t at )

2



= .]é‘ Ln]ﬁz9+;x + -2-311 + C

2x = 3 tan @8
tan9=?3)-(-

(Note: If you had gotten a &

in the answer then solve for

8 in ta.ne=—23)S to get

8 = tan°1(-23’5).)

[6] complete the Square
Use it when you've got an ax2+bx+c (often in a radical in
the denominator) you can't get rid of. The idea is to change

2 2.2 u2.a2

ax"+bx+c to a and then use trig substitutions.

or

[Note: The two a's are not the same here.]
METHOD:

ax2+bxte = (x+%)2 +(whatever you need to make c come

Ehen X + 5% will be \a

EXAMPLE:

out right)

b _
?5.-_‘1

Now we have u2-82 with

f-—-T u = x-1, a = 3
(x-1)°-9 . u = a sec @
x-1 = 3 sec §

!/\dx=3secetanede

- I3 sec § tan g de

3 taV /(x»l)2—9 = 3 tan 8

1t

inlsec g+tan 8| + C *-
J(x—t\"-q
2 .
Lnlﬁil + JE;E%E:Zél +C 3

A common sense attack:

J‘._i"_l_..... dx (If you were going to use a
JxE-Hxe3 u-substitution, then you would

= %]’—-?—x—:?-‘— dx need a 2x-4 in the top, so
V;; -hxt3 multiply and divide by 2 and

- %f 2x-h+2 o subtract and add 2)

/xz—hx+3

NPT =N N B

x“-bx+3 }xg—hx+3

{an ordinary u-substitution) + {complete the square)

[You could have simply completed the square from the beginning: ]

j'_._.._.l.(_:l— ax

/xﬁ-hx+3

.._)E:.:l'____. Xx-2 = secC 8

80

dx = sec 6 tan @ 48
and

x-1 = sec a+l



[7] PARTIAL FRACTIONS
Partial fractlons are hard to explain, but fairly easy to
catch on to simply by watching a few solutions. Use this tech-

nique on quotients of polymomials. First, meke sure the degree

of the numerator is less than the degree of the denominator.

(If not, divide first.)
The idea 1s to factor the denominator and then divide the
fraction up into a sum of fractions that are easier to integrate,
for instance:
1
—~5— dx
f x“-1
=J‘.—.——.].'._—_..dx
(x-1)(x+1)
% 1
2

rETR ey

dx

-

-1 tn)x-1] - 1 in|x+1l] + €
2 H

But how do you divide the fraction in the integral into a sum of

simpler fractions?

METHOD:
Factor the denominator into. powers of linear and quadratic
terms. (There 1s a theorem that says you can do this.)
[NOTE: 1In what follows A, B, C, D, etc. are constants
AX+B, CX+D, EX+F, etc. are linear terms

2+B, CX2+DX+E, etc. are quadratic terms

AX
( ) is a factor which contains some
stuff that doesn't matter for the

moment ]

A

S0, for instance, you might have

[ r—d 23
(x#1) (2x-3) (x7+1) (7Tx2+3x+ 1) (x-2) 2 (x°47 )3

(Most real problems are
nowhere near this ¢omplex)

constant
1\ Each linear term gets a XTIHnearJ *

So { )
(x+1)(2x—3)(x2+1)(7x2+3x+1)(x»2)2(x2+7)3

iéT + §£§3 + (other stuff).
linear
2\ Each quadratic term gets a quadratic

A, B_, CX+D, _ EXF
w1 7237 020 7 e

+ {other stuff)

3) If the linear or quadratic is raised to a power p. Then you

do either 1 or 2, above, p times as follows:

(x~2) (x-2)°
t 2 fractions, increasing exponent
in denominator each time
( ) o IX+J | _KX+L . MX4N

(x247)3  x4T  (x%4T)° (x%47)3

3 fractions increasing
exponent in denominator
each time.

Now our original integral

! (

(x+1) (2x-3) (x°+1) (7x%#3x+1) (x-2) 2 (x°+7)
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CX+D 4y & EX+F

A B
= T ax + dx + dx
I x+ I 2x-3 I x°+1 7x2+3x+1

KX+L + j- MX+N

G H IX+J
+ dx + dx + dx +
.f -2 f I} .I‘ x? -r (x2*7)3

(x-2) +7 (x+7)°

You can now do each of these simpler integrals if you know the
constants A, B, C, D, E,... etc. We will show how to evaluate
the constants in the course of doing the next example. (As
noted before, it's a lot easier to do partial fractions problems

than 1t is to talk about doing them.)

EXAMPLE:

§ sy - (G + ]

(x+1)(x“+1)

To evaluate A, B, and C, you now combine the fractions.

(x-1) _ A(xP1)+(BX+C) (x+1)
(x+1)(x°+1) (x+1) (x7+1)

The numerators are equal.

A(xCr1)+(BX+C) (x+1)

2, A+BXC+BX+CX+C

x-1

= Ax
(0)x2+(1)x—1 = (A+B)x2+(B+C)x+(A+C) [Set coefficients equal.]

So A+B =0
k B+C = 1
A+C = ~1.
Solve simultaneously to get A = -1
B =1
c = 0.

-12-

Now

I ___iﬁll%___ dx

{x4+1) (x°+1)

~1 X
dx + dx
[ = [ X241
tn|x%1
-tnjx+1] + ;‘ljr‘"l +C

SHORT CUT for evaluating A, B, and CI

i

The equation x-1 = A(x2+1)+(BX+C)(x+1)

If x = -1 then
(-1)-1
-2 = 2A

A(1+1) + O

A= -1.

If x=0
0-1 = A(1) + (B(0)+C)(0+1)
-l =A+C
.1 =-1+C (since A = -1)
so ¢ = 0.
Now you have
x-1 = -1(x%+1) + (BX)(x+1).

Choose, say, X =1

0 = -1(1+1) + B(1+1)
0=-2+ 2B
2B = 2

B =1.

1s true for all x's, 8O
substitute in some specific
x's that will make the
expression simple,
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Here are two more examples: J‘ x sin x dx

2
f2x+3 dx v = -co8 x dv = sin x dx

x“(x-1)
[ x sin x ax

_ AX+B C
=] = ax+[ =1 ax A= -3

x =[ uav

B = -3
= -3 an|x| + % + 5 enjx-1} + ¢
c=5 =w - [v du
J- dx

m = -x cos x + [ cos x dx
=[ _____957?..___ = -x cos X + 8in x

(x-1) {x“+x+1)

A=3

A BX+C
=[ oy ax + [ 5—— ax CHECK

x I X“4x+1 B =~ %
1 2 d (-x cos x+sin x) _
=3 tn}x-1] + (do a u-substitution c=-3 T = (-x)(-sin x) + (cos x}(-1) + cos x = x sin x

and/or complete the’
square) Sometimes you have to use "by parts" twice.
As you can see, partial fractions integrals make good test f e¥sin x dx u = e* du = e’dx
questions because you often have to use the other techniques you v = -coB X dv = sin x dx

4
#

Judv =uv - [ vau

have learned in order to work out the new simpler integrale.

-eXcos x - [ (-cos x)eXax

#

(8] By Parts

Memorlze Iudv = uv - fvdu. You have to decide what u = -e%cox x + fexcoa x dx ?ﬁt2238§a’ts" again on this
is going to be, then the rest of the stuff in the integral 1is u = e* d“l = efax
automatically dv. The best way to learn what to let u be is (uy vy vy duy) v, = sinx dv, = cos x dx

by practicing. You decide whether you've mede & good choice = -e¥cox x + (e¥sin x - fsin x e*dx)
for u by looking at whether Ivdu on the right is simpler than
We can now solve T
Judv on the left. Look at the homework problems in the "by parts” w solve for our original integralin

section of your book to get an idea of what kinds of integrals Iexsin x dx = -eXcos x + eXsin x - Iexsin X dx

need this method.
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2fexsin x dx = -eXcos x + eXsin x

x x
jexsin x dx = —& 095 x+e"sin x v C

2

. d -eXcos xte*sin x
Check: a;(——_____.E_______ + ¢)

= é(—ex(fsin x) + cos x(-e¥) + eXcos xrsinx e¥) = é(eexsinx)

X
= e sin x

Eﬂ Rational functions of s8in x and cos x (sometimes

optional}.
Memorize 2z = tan %
sin x = 2z
. 1+z
’ 2
cos x = LZZ
1+z
2 dz
dx = 5 .
1+z

The method consists of plugging the above into the integral

and then working out the horrible arithmetic that usually results.

Remember to change z's back to x's at the end.
Ll
7 sin x d
IO BYco8 X OF
2z
_ I 1+zE (2 dz)
I - >
P l-2z l+z
l+z
- (1+z2) (2.9zy
" 2 2
2+2z7+1-2 itz
(1+2°)

-16-

uj- z dz

TN T A (12

(3+2%) (1+2%) (partial fractions)
1

1
- 5 2 -é z
= U — dz + [ S dz)
f 3+z ! 1+z
= (- % Ln|3+z2| + % Lnl1+22|)
2
1+2
= Lnl———?
3+z ! T
1+tan2 X
= Lnl___.___..z_z
3+tan % 0
= ] §H - i3l
= i3]

Rationalizing Substitutions

Plug in something that will get rid of the trouble. "Ration-

alizing" means "get rid of the radicals" (or, at least, get them

out of the denominator). 8o, in general, let u Dbe the worst

looking radical in the integral and see what happens.

dx u = a+b/x

a+b/x
Vx du = -2 ax

\(//”"-"“\\\\\\\~v o/%
= %UJXEEE g¢§ﬂg = dx

You want all wu's, no x's.
2 pu-

== [ Qu Jxo= B

i
.
—
Fey
[y
="
=
[
Cy
P
=
~



-

- fg (u - anlul)

= —% (at+b/X - atnla+h/x|) + C
b

;q

2Ideu — You could also let u
at+bu

du = dx

_,pu_du oF

=2l 3reu ol
dx = 2[xdu

1 ap 1 ’
2 u - du
(5 Erafb'u Q'\—« (divide u by atbu to get 1 - a

2u _ 2a Ln]a+bul 5 b
R ) a+bu),

= 35 - _?_% Ln|a+bﬁl 3 which also checks since it differs
b

#

b

+ C from the first answer by a constant
Check
d (2 (aru/ - atn|arb/E]) = S - —2— (L))
T2 b 2/% (a+v/x)e ,/i‘
2 (b(a+b/X) - ab b2 /% 1

= = (2) =
b2 (atb/x) (2/%) (?'(mﬁ)ﬁ atbyx

EXTRA: For some courses you need the following:
sin(mx)sin{nx) = %Icos(m-n\x - cos{m+n)x]
sin(mx)cos(nx) = %[sin(m-n)x + sin{m+n)x)

cos{mx)cos(nx) = %[cos(m-n)x + cos{m+n)x]



EXERCISES (WITH SOLUTIONS)
compiled by Mathematics Support Capsules, 8/81
to accompany
LSC Mathematics Learning Module IX
TECHNIQUES OF INTEGRATION

A Quick Review of e different techaiuss of infegration:
1) U-Subshtutons
1) e subshhdions usia

sintx+ (o3t x =1 w a) odd powers Of sin +€0S
| +cottx = Csc™x } Fn Iag any power of tanwcot
| + tantx = sec’x ¢) even’ powers of sec wesc.
3) swbot fuHon using
sSinix= Y- 032X wse 0N Even Dowers
COSx = Yot Yrcos2x of sin ~Cos
H4) Trig Suwbstituhons ‘
for” at*-ut D use w:=asineg
a +u’“ D U w=afang
wt- 2 WL =A5ecB
Paalurcb ’
I I
az,uz (¥ 9 03*+u.’“ > w ut-a w-a
[ 9

5) Completing a square ythen ua;‘ng g subshiufion

b) Partiad frachons

7) By parts
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