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POLAR CCURDINATES

1. why polar cogrdinates? What advantages do polar coordinates
have over rectangular coordinates? For one thing, polar coordinates
often lead to easier compuations than rectangular coordinates would
for a given problem. This alone makes it worthwhile to know how to
work with polar coordinates. More jmportantly, though, polar
coordinates arise quite naturally in many applications -- honey bees
use a polar coordinate system to tell other members of their hive
how to get to a newly discovered food source, birds use & polar
coordinate system to help them in their migrations, and the equation
for the exit remps on most highways can best be expressed in polar
coordinates. Since polar coordinates come up in problems from fields
as diverse as biology and civil engineering, its probably worth your

time to learn something abgsut them.

11. What are polar coordinates? The Cartesian {or rectangular)

coordinate system (named after Rene Descartes {1596-1650)) has been
so successful since its introduction that it is easy to forget

Recell that
T(hﬂ

that there are other egually valid coordinate systems.
to graph the point (3,4) in the

Cartesian system, one moves 3 units

b e

. P

to the right {from a fixed origin)

and then 4 units up. Negative numbers

b - -

are taken care of by moving to the left and down.

&3,

bolar coordinztes work slightly differently - one finds the
directed distance, r, from the origin to the point, and the directed

angle, &, between the x-axis and the line segment connecting the

_2-

point and the origin.

An example should help clarify what all this means.

Example #

L0 AL A

the distance from the origin to the
point, so r = Jq€—0)2+(1-0)2 = /32+72

= V2. g is the angle shown in graph

#2. We know {from basic trigonometry) N "

The point is then referred to as (r.,2).

Find the polar coordinates for the point (1,1). r is

43

that tan & = % = % , so 6 = arctan(1)

= %n The polar coordinates for the point
are (r,e) = (/5,%).

Unfortunately, we are not done yet.
point (Jf,%) by letting & go around
in & circle once {or any number of
times) before coming to rest (see
graph #3). In this case, the polar
coordinates for the point would be
(/~~—+ 27n) where n is the number
of times 6 goes around before stopping.
in the opposite direction {see graph #4)

© find that (2, can also be

\l-bl:i

)
written as (vVZ,- “). And once
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We could also get to the

0z, 7%)

X
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#3

b

We could also let € @0

(5,- 3%

again, & is allowed to circle \\\3/7

around as many times as it wants,
so we get (vZ,° —~—- 2%n) as another
way to write the point in polar coordinates.

There is one more small hitch (see graph #5)
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1f we let ¢ = %g , and then go in the 111. Converting to polar coordinates. It is sometimes necessary
opposite direction, we can end up at i /‘fﬁ»%@ to convert an equation given in rectangular coordinates into cne
/ . -
our point once again - only this time . " //7\ R in polar coordinates. Fortunately, this is a very easy process; we Just
we call it (—/?,%}) instead of use the substitutions:
(ﬁf,%}. 0f course, (—%f,%5ﬁ~2xn) and @ﬁ%@ I s X = r c?s 3
5 =37 4 e y = r sin 8
(~(2,~5—— Zrn) are also possibilities. R
L= tan g
One thing should be very clear from this example - any point can
be represented in many different ways in polar coordinates. This ' Exzmple #3. Convert x2+y2 into polar coordinates. (This is a very

will Tead to some interesting situations - as in Example #2. easy example, but it is quite useful.)

KL

Example #2. Show trnat (3,%%) is on the curve r = 3 sin 26 x2+y2 = (r cos 6)2+ (r sin 9)2 = r2c0529+ rzsinze
We first attempt to show this by letting r = 3, & = %;, SO 5 2 2 .2 2

3 30 ! = rf{cos“e+sin“6) = r
r =3 sin 26 becomes 3 = 3 sin 2(%) = 3 sin(F) = -3, which

. : ' 37
certainly isn't true!! However, we note that (3,—ZJ can also be i Example #4. Convert x2+y2 = 4x intc polar coordinates.
written as (-3,2%). Then r = 3 sin 28 becomes -3 = 3 sin{2 (i)
4 ‘ N i v = 4 r cos & {see example #3)

or -3 =3 sin(%}) = -3, which is true. So (-3,%;) is on the curve r = 4 cos &

r = 3 sin 26 since it satifies the equation of the curve, which means

{

(-3,{5)). This means we have found a point - (3,%?) - which doesn't

ke 3 Example #5. Convert x = y 1into polar coordinates.
,2L) is on the curve (after all, {3,%°) is just another name for x -y
rcos & = r sin &

(%

satisfy the equation directly, but which does satisfy the equation cos & = sin 6
when rewritten as (-3,%}). 1= tan &

[ tan'](l), i.e., & = %

We hope these examples don't frighten you too much - we just . .
IV. Converting to rectangular coordinates. Just as we sometimes

want you to understand that polar coordinates have some pecularities X R
need to convert from rectangular coordinates, we also sometimes need

one doesn't find in cartesian coordinates. We now turn to some . .
to reverse the process and convert from polar coordinates into

easier material. o . L
rectangular coordinates. Unfortunately, it is vsually & bit trickier
to move in this direction. However, there are scme standard techniques,

which we will demonstrate with a2 few examples.
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& to plotting points, you can use the methods of graphing you learned

E£xample %¥6. Convert r = 6 CO0S 9 into rectangular coordinates, !

and then grapn the function. for equations in rectangular form {such as using first derivatives

Muitiplying both sides of the equation by r, we get as an aid in graphing).

2 = 5r cos 5, or x°ry? = 6x. Completing the square, we get Example #8. r = & (The Archimadean spiral - so named because
x2-5c+9+y% = 9 or (x-3)2+y2 = 9. This is a circle of radius 3, : Archimedes (287-212 BC) was the first person to define/discover this
with center at (3,0). curve.) 1
ey r 8
2 Co58 0 0
Example #7. Convert r = cos 25 into rectangular coordinates. ~% %
Note that r cos § = X, but r cos 28 ¥ 2x. Instead, we need to % T
use a trig identity: cos 28 = cosza —sinze. - _:
Then r = cos 28 = cosza -sinze. Multipliying both sides by r2, z 2
we qget P rlcas?a —rzsinze, or r3 = xz-yz. Now -%1 '%i i
Pl o= (rz)(r) = (x2+y2)(/§§:;§), so we end up with (x2+y2)(/§2+§2) !
372 2,2 " Now we use fact (-r,8) = (r,8+w), so (-%,"%) = (%,%). A

2.7, (x2+y2) = X .y {(which should make you appreciate
. . - - . s N little thought will convince you that plotting negative values of 8
the simplicity of the equaticon in poiar rorm):

will not give us any points on the graph that we couldn't get by

v. Plotting the Points. Unfortunately, converting equations fram graphing positive values of 6.

rslar coordinates into rectangular coordinates is a help in graphing We can also use technigues from calculus to help us graph this
oaly in fairly simple cases. There are many esquations where it 1is function. Since r = 8, %% = 1. This means that as 9 grows larger,
difficult {or impossible} to convert to an equivalent “"rectangular” r also grows larger.

equation, or where the rectangular form of the equation is so ;

complicated that it only makes matters worse. An example of an g

equation of this type is r = 8 (you should spend a minute or two 1

trying to convert this into an equation in rectangular coordinates -

but don't spend too much longer than thatt). The last page of this capsule ts a piece of polar graph papar

which you may slide under your paper as & guide for more accurat

irawing.
drawing

S0 what can you do when you run into an equation of this type?
You can go back to the old "tried and true" method of plotting points

until you can "guess" at what the graph looks tike. And, in addition
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Example #9. r = 2{1 + cos 8§) Using calculus, note g% = -2 sin 6.
This tells us that between 6 = 0 and 6 = =, %; is negative {since

sin € is positive in this range); while between 6 = 7 and
dar
ds
the origin 2as 6 goes from 0 to 7 , and gets further from the origin |

6 = 27 , is positive. This means that r is getting closer to

as & goes from © to 2m. We can deduce from this that r reaches

its largest value when 8 = 0 and its smallest value when & = w .

{Note that & = 0 and 6 = = are the two critical points of the

3
5

functien, since Fro 0 at these points). We now compute a few
poinis {and use the above information to connect the points) to get
the following graph:

& r

4] 4

I ? .

3 4]

3%

5 2

vl. Additional) hints for graphing in polar coordinates.

When graphing & function, it is always nice to know whether or
not the graph is symmetric about any line, especially whether or not
it is symmetri¢c about an axis. For, if a graph is symmetric about
an axis, you only need to figure out what the function looks like on
one side of the axis, then use the symmetry to find cut what the function
leoks like on the other side of the axis.

Trne foilowing table is useful in locating symmetries in polar
coordinates - if the substitution does not change the solutions to

the esguaiion, ihen the graph has the given symmetry:

Substitution Symmetry
-¢ for ¢ X-&%1S
-r for r origin

n-¢ for § y-axis

Example #9. Find which of the following curves are symmeiric apout

the origin, the x-axis and/or the y-axis.
a) r = 2 cos §
by r® = 4
c) r = 2+2 sin &

a) We try the substitutions: First try -8 for &. r = 2 cos{-2}.
Since cos{(-8) = cos &, ithe eguation isn't changed by this
substitution. This means the curve is symmetric with respecti to
the x-axis.

5

Next, try =-r for r. This gives us =~-r = 2 cos &, which has {-2,0)
as a sclution. Since {-2,0) 4s net 2 colution to the original
equation, the curve is not symmetric with respect to the origin.

We also can try (m-8) for 8, getting r = 2 cos{n-8}, or
r = -2 cos 6. This has (-2,0) as a solution, and (-2,0) doesn't
satisfy the original equation, so the curve is not symmetric to the
y-axis.
b) r® = 4. Note that using -r for r gives us (—r)2 = 4 ogr
r2 = 4, s0 the curve is symmetric with respect to the origin. Alsc,
the substitutions -6 for 6 and =n-& for & don't change anything
(since there &re no 6's in equation!!) so the curve is symmetric with
respect to both the x-axis and the y-axis.
c) The reader should make the necessary substitutions to find inat
r = 2+2 sin 6 is symmetric with respect to the y-axis, but not with

respect to the x-axis or the origin.
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Problems ! f} r =5 sin 8
1. The following points are given in polar coordinates. Graoh the ' g) r = 2 sin i
points, and give all possible polar coordinates for each point. f h) r2 = 2 cos 23
ay (2, %) t iy r = 2{l+cos 8)
i
b) (*3.%) : i) r = -3(1-sin 9)
C) ("3::61> t
Solutions
3 . .
2 t o = b T
2. a) Show that (f,g..) is on the curve r = 2 sin 26 l 1 a) Y (Z’E) = (2,.'41+ 2+n)
b) Show that (:,-,~2--rf) is on the curve r = -sin(%) f t“Qe:”’j[, 37
< or = («2,7{4- 2en){n = 0,21,z2 1
3. Convert the following to equivalent equations in polar coordinates: }
i 3.5 R -
a) x%ey? - g : b) (=3.2) = (-3,F+2mn)
2 2 = = 77, = 5 1
b) (x-2)}° = 9.y ) PRet- 1 or = (3,55+2zn)(n = 0,:1,22 ]
— i
¢y x =y » 73 {
d} 3x+2y = § c)
2 . 2 -
e) yT+2y = 3-x ) or = (3,25—~'~+ Zeny{n = 0,-1,:2 i
1. Convert the following to equivalent equations in x and y, and i \9??
use this to help you sketch the graph of the polar equations.
a) r(sing+3 cos &) =2 2. a) If we plug in r = 2, 8 = g—'x, we get 2 = 2 sin Z(»f“'—di) or
5) r = sec 3 2 = -2 which isn't true. Yowevar (2,2:} can also te written as
¢} r=2tans (-2,:‘{"-). If we use r = -2, 8 = —'4: ve gei -2 = 2 sin 2(12:'}, or
d) 5= §’ (hint: see problem 3c) 2= -2 (which is true). So (-2,—'31) satisfies the equation, i.e.,
= i -7 ; . - 37
e) r = 4sin g (*2,—57:) is on the curve r = 2 sin 25. But (-2,57) = (2,5, so
5 Graph the following: (2,”—;‘) is on the curve.
al r o= 3 . by Not ) T 3ay .o 21 oy d follow the soluticn to part a
. } ote that (§,~2«, = {55, an ollow the solutio o part a.
5) r o= -3 2 2 2
= . - 3. a) x2+y2= 4 == {r cos 5-)2+(r sin 3) 4; rlcas 24+ rfsin®s = 4
[« & 5 - .
5 ; 2 2
; Cos"g +s5in®g) = 4 rc o= 4 r o= 2
d) r = 3 cos 28 x rd ° ) N .
‘ ) (><-3)2 = 9 y2 x“-4x+9 = G.y© X *12 =4z r o= dr cos &

S ——
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c) x =y r cos £ = r sin € cos 6 = sin & 1 = tan 6
b
& = an ' (1 G o= r
& tan (1) & + g
d) 3x+2y = 5 3r cos £+ 2r sin § = 5 r{3 cos 6+2 sin &) = 5
2 bl
e} y“i2y = 3-x7 x‘+y2 = 3-2y r? = 3.zr sin &
4 a) r{sin 6+ 3 cos 8) = 2 r sin 8+ 3r cos 6 = 2
y+3x = 2
E P r5in6 ¢ Bos )7
- 1 -
b) y = sec € T r cos & 1
x = 1 }
t G 03 5208
c) r o= tan & r o= ricos & = r sin 8
rir cos &) = r sin 8 (x?) = 2
NETNI 4
4 2,, 2 xa i
X = _y Li=a ) "'"7 =
1-x
b -1, 5 o sin & /3 r sin
1 6 = o 3 = = Sl = =
d) 8= 3 g = tan {V3) tan 6 = V3 v Ty /3
% = /3 y = /3 x
{tc help understand how we "guessed”
to go from & = % to & = tan'](J§),
see problem 3c¢).
R . Z . : 2 _
e) r= 4 sin 6 r¢ = 4r sing x“+y©® = 4y
z,.2 2.0.,2 I

x“+yS-4y = O x4+ (y

(,H’CJLDT roadios 2»

center at (O)
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2
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