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Notes on Differential Equations

§1. Differential Equations.
A differential equation is an equation having one or more

derivatives or differentials. Examples:

(1) %% = x sin x ;

(2) %% =y sin t ;

(3) (x%+y®)ay - y2ax = 0
() y' +y=¢e*;

(5) 2.3 o,

ax2
2
(6) X +y=0

2
(7) (Y'")2 f(y)3 f&f = sin xCcos X .

pDifferential equations may be classified by
(a) order: the number of the highest derivative occuring in the
equation (e.g., equation (4) has order 1, equation (6) above has
order 2}.
(b) type: ordinary differential equation or partial differential
equation.
(c) degree: the exponent of the highest power of the highest-
order derivative (e.g., (7) has degree 2, since the third deriva-
tive term has that power).
You have already seen some easy differential equations. For
instance, in Chapter § of Thomas, you learned how tq solvk (1.e.,
integrate) equation (1) by means of a technigue called integration by

parts; the solution has the form

y(x) = -xcos x+sinx+C ,
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where C 1is an arbitrary constant. Note a few facts here:

(a) a solution is a function y(x) without derivatives such
that it and its derivatives satisfy the given equation;

{g) because C 1s an arbitrary constant, we do not get a single
solution to a differential equation. Instead, we have what
is sometimes called a family of solutions or envelope of
solutions;

{(y) if we add a condition to our problem which fixes the arbltrary

coenstant, we have added what 1is called a boundary condition

or boundary value.

Example 1.1. As a result of leakage, an electrical condensor dis-
charges at a rate proportional to the charge at any time t. If the

charge @ has value 10 units at time t=0, find Q as a function of

t.
Solution. The rate of change is %% . Since it is decreasing at a
rate proportional to the charge itself, we have 5% = -kQ. This

{s the differential equation we wish to solve. Note that it is an

ardinary differential equation (type) of order 1 and degree 1.

Before we solve this equation, notice that we are given an extra
piece of information, namely that a(0) = 10. This is our boundary

condition.

Now we wish to find a solution @ = (t), 1i.e., Q at any time

t. 8o
d
3% = -kQ gilves
49 _ _
75 = ~kdt .
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oKEHC _ KEC -kt

Q=

So at any time 6,

K
alt) = ae™"t,

with A an arbitrary constant. Now we use our boundary value to find
A for this problem.

since @(0) = 10 = ae® = 4, thus q(t) = 10e”%.

We now show that Q{t) satisfies the given differential equation.
Since @(t) = 10e™XY,  we must show that J2 = -10ke ¥, But this is
clear.

Now that we've seen an example of a differential équation and its

solution, let's look at some general kinds of ordinary differential

equations which have solutions.
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42. Equations with variables separable.
Consider an ordinary 4ifferential equation which can be written
in the form
Y Exercise 2.
f(yYdy = g{xidx e
rind the equations below which have variables separable and solve

This kind of equation has all, its y-terms with dy and all its x-terms th
em.

with dx, and is thus called an equatlon with variables separable. "
1. tnydx+ {1+x")dy =0
It then has a solution yiny ( ydy
2. 9‘_1 = ey-x
Jr(y)ay = fe(x)dx + C . ax

3. (x2+y2)dy - yzdx = 0

Example 2.1. %x = y sin x may be written ay N
ay 4, ax + 2y = e
= sin x dx
7 ’ 5. J2Xy dy = dx
so Wy = -cosx + ° is 2 soluticn ~f this eaquation. 6. (xey/x Fy)dx - xdy = O
7. xdy + ydx = sin xdx
8.  (x+y)dx + (x+y“)dy = 0
-
dt*©

10. (2xey-+ex)dx + (x2+1)eydy =0
11. (x-2y)dy + ydx =0
12. y" 4+ w2y==0, w a nonzero constant.

2
d d
13, xSEe -0
dax”
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§3. Homogeneous Equations.

A differential equation which can be put into the form

dy _ =¥
dx ‘(i)
is said to be homogana2dus. . I+ can then be solved by means of a
substitution
v =2
X

which makes it a variables separable equation.

) o] .
Example 3.1. (xT+y“)dx + oxydy = O 1s homogeneous, since

¥ 2
(a) y - - ﬁﬁfﬁlﬁl = - (%) .
o dx Xy E(X)
x
letting v = %—, ¥ o= VX
dy _ . L4V
Ix v xii)(
d 14v° 1 2v
v +V "Ax
SO V 4 X5 F T BT e Thus -= + ———s dV = 0, and
4x v X Te3ve
mx+%mu8ﬂ)=%mc .
2
Then Se3v?) = ¢,
x3(1+3(§)2) = ¢, and finally
I»]
x(x2+3y“) =C .

gxercise 3. Find the equations in Fxercise 2 which are homogeneous

and solve them.

T

5y, First-order linear equations.

The linearity of a differential equation 1s a function of 1ts
dependent variable. To find out whether a given equation is linear, we
compute the degree (not the order) of each of 1ts terms, addinz the
exponents of the dependent variable, and of any of its derivatives
tnat occur in the term.

If every term of a differential equation has degree zero or degree

one, then the equation 1s sald to pe linear.

Example 4.1.
(a) %% + 3y = x is linear. The dependent variable 1s y.

%% has degree one, as does y. The independent variable x, has

degree zZero.
(b) %% + 3y2 = x is not linear. Although %% has degree one,
y2 does not. Again x does not matter.
(c) §~1 + 3yx = sin x 1is linear, but
X

2
(d) (%%) + 3yx = sin x 1s not linear.

n
(e) 9~% + by = 0 is linear.
dx

(f) ¥y %% = x2 is not linear, since the left side of the equatlon
has degree two (adding the degree of y and the degree of dy/dx}.
(&) x2 %% = y is linear. Each side has degree one.
Note that examples (c) and (e) are linear, but not rirkt order (why?).

In this section we will only consider first order linear equations.

Every first order linear equatilon may be written in a standard

(sr) W+ oy = Ao,
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with P(x) and Q(x) functions of x. The solution of (SF) consists p(x) = eIdx = e*

of finding a function p{x) called an integrating factor, which
Our solution is then equation (S) on the previous page, p(x)y =

turns (SF) into
fp(x)q(x)dx + C . S0

d d
(sF") elx) T}é v p(xX) Py = p(x)alx) = gxlp(x)y) - X x X
e’y = fe -edx + C ,
h ht sid s
The rig side of this last gives our sclution, exy - fezxdx rc,
(s) p(x)y = [plx)Q(x)dx + C . Xy = L 02X L ¢,
_ 1 x -X
So what is p(x)? From (SF'), y=35€ +C .
d - ER
p(x)7! + p{x)p(x)y = p(x)gxi-(d )y - Example U.3. xdy = (3y +x")dx does not look first order linear, but
1x dx dx Rl ) b
it is, since it can be written as
Thus
-4 dy 3.
p(x)P(x) = 3% e T TV =X
gives , Then P(x) = -(3/x), Q(x) = x .
ETgT = P(x)dx . Thus
- d L
Hence p(x) = eI (3/x)dx -3
X
ta p(x) = fP(x)dx ) So our solution is
Finally,
X 1
: = I dx + C = -= + C .
o(x) = ef?(x)dx f% ;3 X
{s the integrating factor. ! Thus
el
Although the above method looks hard, the same technique 1is y = -x" +Cx
" " , .
used tn all such problems, and becomes trivial® by the third time 1t Exerclse L. Find the first order linear equations’ in Exercise 2 and
ts used. solve them. (Hint: there are “*ree ot “nem..

Fxample 4.2,

a7 ¥ = 2” 15 first order linear, with p(x) = 1, a{x) = e in

x
(5F). We meed to find plx) = EIP(x)dx .
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85. Exact Atfferential equations.
Everyone remembers the total differential from Thomas; glven

z = £{x,y), we can write gz = 2% dx + 55 dy = %% dx + %§ dy.

For certain kinds of functions £(x,¥) (for instance, the continuocus

ones), the mixed second partials behave very nicely; namely,
32f 32f
3X3Y 3yax

so 1f we look at an equation

L

(E) M(x,y)dx + N(x,y)dy o,
it looks like our dz-function above, as long as éy = %g . For
this reason wWe say that Lf (E) satisfies %% = 3%" it is an

=

sxact differential eguation. We can solve it by finding @ function

2z = f(x,y) sucno that

if = dz 7 M{x,y)dx + N(x,y)dy = 0.

Example 5.1. (xy2 + y)ax + (xzy + x)dy = O

i1s an exact equation, since, letting M = xy2+y and N = x2y+x,

we have

aM _ AN

Y 2xy + 1 = X
Find a solution f(x,y) as follows. We know M = %% by our first
aquation. so f = yM dx + Cly), where cly) 1is =8 function of

y alone (since the x-derivative of 3 function of y 1s zero).

~ ol
waus Flx,y) = [(xgTrydx T AN
I

1

2.2
L+ xy + .

=S

Mow we must find C{Yy); but we xnow that %7 = N, 80

~11-

2 )
x"y + x + C'(y) = X“y+x.

Thus C'(y) = 0, and c(y) = C, .ust an arbitrary constant. SO
our final solution 1is

22
flx,y) = 5L+ xy + C =0

3

Example 5.2.
x
(e™+Lny + %)dx + (; + tnx + siny ) dy =0

is exact, since

+
®i
il

5

M
3y

i
o
>

Our solutidén satisfies

3
Ix floy) = M, S0

£(x,y) = [Mdx + C(¥)

#

[(e* + eny + Hax + S(y)

x
= e + xhny + yinx+ cly)-

Now %§-= N, so
? + nx + C'(y) = X 4+ tnx + siny .
¥
Thus C'(y) = siny, and .
c(y) = -cosy + C. J
Finally,

. X
F(x,y) = &% + xtny + yInx - cosy + C = 0

There are other methods of solution for exact equations in-
bl

clt
uding one which is sometimes referred to as "guesstimation",
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which consists of continually asking oneself what more is necessary
of f(x,y) to get the M and N 1in the exact equation. Another
such method involves finding an lntegrating factor (but not the
same one as in §4).

Note: Many technical ?etails as to what functions M and N
actually have a solution f(x,y) are skipped in the above. None
of these details is trivial, and all involve such problems as
whether M and N are continuous, whether they have partisl deriva-
tives, whether those partials are continuous, where M and N are
defined, and more. Some of these questions are answered in Thomsas,

$15.13. These details are ignored in this course.

Exer~ise 5. 730 back to Exercise 2; find the exact d.e.'s and solve

them. {(Hint: “hree morej.
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§6. Second order equations.

There are many; we study two types.

2
Type 1. F(x, %%, %—%) = 0. The Jependent variable y is missing.
C

2

solution: Reduce by a substitution p = %%, %% = g—% , to a
- Ax

first order equation

2 .
d 'y _ _ndy
Example 6.1. ;;§~« 1 .3;) .
This becomes %& = /1 - ;?
S50 _~_d_E’- = dx,
.2

sin "p = x+C,

p = sin(x+C).

But p = 313 so 2% - sin(x+C), and

y = -cos{x+C) + k.

Notice that we have actually integrated twice here, and that each
time we have added an arbitrary constant. What does this say about

a third order d.e.? How about an nEn order equation?

2
Type 2. F(¥, %%. £~¥J = 0. The independent variable x 1s missing.
‘ dxe
2
Solution: Substitute p = %%, p%g = Q~§ .
¥ dx”,
d2 i .
Example 6.2. +y = 0.
dx”
pd?‘}’:'\y), Su

pdp = -ydy.
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~1h-
02 y2 ‘{2 §7. Homogeneous linear equations.
Thus -l + -
K E ' The idea of a linear equation was given in §4, where we discussed
p2 . k2_y2 first order linear equations exclusively. et us now consider higher
order linear equations, e.g., those of the form
dy 22
2= p = +/kT -y . n n-1
ax . 4y ¢t a2 & T v+ Y tay=F(x) .
ax" 1 dxn—l n-1 dx 2
50 8y = aax gives
7 % - We will further choose each a, to be a constant (rather than as a
K -
v function of x), and F{(x)=0 for now. When F{(x)=0, this kind
-1y of function is called a homogeneous linear equation of order n.
sin % = +x + A, and | .
| d3v d2v dy
! Example 7.1. —% - 3k Eqﬁ = 0 is a third order homogeneous linear
y = k sin(& + x). dx dx”
- ! equation. Solution of such equations is mainly high-school algebra,
i
. o ] done as follows. Let y=f(x}. Then write ay - pf(x) . D 1is
rxercise n. You xncw fthrse of tem). : dx
called an operator on the function f{x). Continuing with operator

notation, we can write

p(pr(x)) = p’r(x) = L% ,
dx
D(D(DE(x))) = DO£(x) = 33% ,  etc.
dx

So the equation of the example above is, in operator notation,

(a) D3f(x) —Z»sz(x) +2Df(x) = O .

This last gives ;

(D3-3p%42D)f(x) = O , 50
(p-2){p-11pidxy = 2
Now define (8) Df(x) = u ,
(v (D-1)u = v

(%) (D-2)v = O .
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The equation for (8) is separable, and in the notation of §2, has the

form

Thus

Next substitute into (v);
2%

(D-1)u = Ce js linear, and is written
du L aRX
T ¢

The solution to (v), by 8L, is
e *y = Cfexdx + D, or

u = Ce + De” .

Substituting the last into (8),

. 5
di . Ce*x#Dex R 30
4x

2
y = Ce'x+DeX+E »

c,D,E all constants. This, finally, is the solution.

30 where, you ask, is the high school algebra? It's there, from

equation (a). First see that (a) looks like the algebraic equation

r3-3r2*2r = O

Fartoring, we get {r-2){(r-1Yr=9, =oO roots of this equation are
r.=2, r,=1ly, Iy~ G. 3y the fdistassion following equations (Y, (¥),

(&), we know we will have an exponqntial solution of the form

-17-

This situation will always occur if (there's always an if) the roots

of the algebraic equation are real and unequal.

2
Example 7.2. Solve g~4 - 3%% + 2y = 0 .
e ax’

Solution: The corresponding.algebraic equation is
2
r“-3r+2 =20, \

with roots r1:=2, r.=1, so the solution is

What if roots are not real and unequal? Two other cases exist: con-

sider the second degree equation
2
ar< +br+c=0

Solutions always take the form

These solutlons may be
1) real and unequal
2) real and equal (i.e., I} = r.)
3) complex conjugates (1.e., ry=a+ iB, I‘2=a-1B) .

‘ .

case 1 is done.

case 2. If ry=r,= r, then cur differential equation has the form

1

Replicating the exrly part of thio section, -"all
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(a) (D-r)y = u

W
(o)

(v) (D-r)u

solve (b) by §2, getting

Then {a) becomes

(D-r)y = Ce™ ™, or

dy _ rXx
a}—c—ry—Ce .

This is first order linear with integrating factor

y = Cxe + De .

2
Example 7.3. Solve :__{_ S ey -0,
X

Solution: Roots are rlzr =2, 80 y = Cxe
e 2

case 3. If roots are complex conjugates, case

should be

o e(a+iﬁ)x+c p(awiﬁ)x, 4,f reals.

(53) Yy = =1 e

This 1s 2 perfeccly good solution,

one. A "famous formula" in mathematics 1is Fuler's Formula:

2x+De2x is our solution.

1 says that the solution

put most textbooks i1se an equivalent

-19-

i

EBK—;COS 8x + 1isinBx
-18x

e 18X - cos gx - 1 sin Bx .

Thus (53) becomes

y = celarip)x po(a-ip)x

ax
y = e™[(Cc+D)cos Bx+ 1(C-D)sin Bx]
ax
(s3) y = e™ (K, cos px+ K, sin px]
Example 7.4. Solve 9—2% PR A
dx T =0

Solution. r2+2r+2=0 has roots
rlz—x«-i, r2=—l~i
So take a=-1, B=1 and get, from (51},
IS < R
y =e [chosx+1{251nx]

Finally, you ask, what if we do not have a guadratic equation?

Example 7.5. Solve

(D+3) (D-2) 2(D+1) ¥ (D-1-1) (D-1+1)Dy = O .

golution: Roots are rl=-3 (one real root), r2=r3=2 (real),
ru=r5:r‘5=r7=-u (real), rg=1+i, r9=1—‘1, rlO:b. So the
solution is
o “3% . 0K, . 2% -4 -4 -
7= Cle + 1,29 + (,j,‘(e + Cue X, C5xe Xy Céxze bx
W L3 -Ux X .
+ Lox7e +e"[Cp :;1nx+c,) cos x] +Cyfq -

0.K? Believe 1t? It 16 nigh school algebra. (So far.)
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Exercise 7. Solve the eguations below. 48. Nonhomogeneous equations.
1 dzx _y=0 A linear equation has the form
. L
d4t°
n) (n-1) '
2 y( + a.y +...t+ @ y' +ay = F(x).
2. 2+y=o0 1 n-1 n
dt
If F(x) # 0, the equation is nonhomogeneous.
3. y" 4+ 6y +5y =0 . T
2
b, y" - loy' + 16y =0 Example 8.1. 9-%»+ 2%% +y = 0 1is homogeneous,
dax© :
dux d2v
5. e =+ by = 0 d2 dy
dx ax” ~—§ + QEL + y =sin x 1is nonhomogeneous.
dx x
3
d e 4 _
5. ax” - 35% Loy =0 Good books in differential equations would now teach you how to

7. (D~6)u(D+2—i)(D+2+1)(D—J§)DY - 0. solve nonhomogeneous equations. We won't do that. What we will do
is show you one example.

8. Use differentlal equations methods to show that
2
i~y ~dy
Example 8.2. Solve: (A) £+ 2=l + y = sin x.
-y = o axe x

n the solution Solution. The corresponding homogeneous equation 1is (D2+ED+l)y = 0,
as e

having solution

L 2 i bx
J = c,eux+-c xe ¥ e 0 x"e x-‘cux3e . ) )
; 2 3 Iy © Cy2 X, C,xe x,
9. Given ein = cos Bx + 1sinéx, prove
This is our solutlon here also, or rather part of our solution (this
e—iﬂx = cos Ax - isinBx . part is called the general solution of the homogeneous case, which

is why we write n here). What we also need is a particular
solution yp such that if we take two derivatives of yp and
put them into the left side of (A), we will get sin x. Well,

3in x can only have Jerivatives A sin x and B cos x, A,B

constants. 50O assume 3 particular solution of the form
7 A sin x + B cos X.
°p

Then yg A n0s x - B sin x

v, -A sin x - B cos X,
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SO
-A sin x - B cos x + 2A cos x - 2B sin x + A sin x + B cos X
= sin X,

and 2A cos x = O cos x = 0, 80O A =0 i

1
-2B sin x = sin X, sS0 B = - g -
Finall, - -1 cos X
Y yp 5 .
our solution is then
- - -X -x _ 1
y=9yp* Yp = Cle + Cyxe CcOs X.

Wwe unashamedly give no proof that adding ¥, to yp gives the

most general solution.

exercise 8.

1. By 'working backwards', show that

y = Cle_x + cexe~x - % cos x

satisfles equation (A) of Example 8.2

2. Use the techniques of this section to solve
(a)
(v)

+ 2y' - 3y = 6x + 2,
i
H
3, solve y'"-y = e*. }
3

y”
2X
yn__y:e A .

This ends our discussion of general techniques.
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$49. Some harder questions.
Question 1. Wwhich of the differential equations in §1 can we now
solve? By what techniques? (Comment: The others will be sol-
vable at some later date in the 293-294 sequence, either by means
of infinite series (Chapter 3 of the text), or by Fourier series
(Chapter 8)).
Question 2. In §3 we studied

(E) . M dx + N dy = O.
Find the differential equation which represents all the curves
perpendicular to (E). Then find the family of solutions of the
differential equation

2xy dy + (xe-yz)dx = 0,

and of the differential equation representing all the curves per-
pendicular to the last equation.

guestion 3. In example 1.1, we first found a general solution

a(t) = e ®F

for the equation g% = -kQ.

(e) Letting k = 1, use various numbers for A to graph the
envelope of solutions represented by the equation Qgt) = Ae't.
(b) Now find the graph of the single solution which is speci-

fied by the boundary value.

Question 4. A body of mass m is suspended from a spring. The
body is pulled from rest by an amount A and released. Use

Newton's law, F = ma, and Hooke's law, which says that tension



in a spring is proportional
i{s the spring constant.
(8) Pind a 4ifferential =qu

(b} Solve this differentia’

guestion 5.
rarads, & coll of inductanze
and a generator which produs

If current intensity at

ts 1 amperes, %the ilfferen
2
7% <3
L S 4+ RTY +
1t :
Find 1 as & runction. =0 in
fa) R =0, L/LC =2, E-
() R =0, I/LC =25, £
. 2 ”
(¢) R=29, .L/LC =9, &=

-2

ts -he a=-unt stretched X,

3+ izn £or she motion.

et.ad”

m oy

-

ez 2 2. 7.0 = wvolts,

where

tima +t at >.m2 point of tne circuit

431 acua*izi f:r the current I
I = ==
-
blotatrii-Rane
= i 2ty
A sin o

k

An eiectrical circuit nes 3 ~apacitor of zapacity ¢C
"z, 7 resistance of R ohms,

in series.

is
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$10. Fuler's Method.

The topic of finding approximate solutions of differential equ-
ations 1s a very old one; Euler's method of solving first order equ-
ations is probably the oldest.

The idea 1s very simple. Every first order equation has the
form

-ty
so there is no problem finding the derivative of the solution function;
it's given to you. A boundary condition then specifies one value of
the solution, namely y(to) =¥y - 859, 1f you want the solution at
any later time tl N

you can move along the tangent line (the derivative 1s 1ts slope) to

find an approximate value for y(tl) . Pictorially:
)
\\\\~ g
Y
1. £,

Of course, unless the solution curve is always a straight line, you

will be wrong in your answer by an error term. Still 1t is easy

to find an estimate for y(tl) by this method. Call the value you

want ¥y - Then, since you have a straight 1ine, you know 1its equ-
ation is
- (dy
(yy - ¥g) = (Hg)t (ty - tp)
0
So
- dy ;
yl = yO +(a’€')t (tl - to) , OT *

0
(5-1) ¥ = Yo + Tty vo) (ty - to)

This last 1s Fuler's formula. Since t t Iy and f are given,

o 1’



it is easy to find ¥y -
Example 5.1. Suppose
y' = £(t,y) = ayt,
where y(1) =1 ,
and we want y(1.5).
Then tg=1,t; =15 y5=1, g% = oyt
So (%%) =2y5%, =2 -
%o

Thus yy =1 +{(0.5)2) = 2 = y(1.5)

This approximation isn't great, since separation of variables
says that
y(e) = o1
15 the solution of y = 2yt for y(1) =1 ; thus the actual value
of y{(1.5) = e1'25 = 3.4904 (to four decimals).
But the approximation is quick, and can be improved upon.

one such improvement is to increase the number of intervals.

Here is a graph showing a three-interval subdivision:

%

error

b EN

Y
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Suppose you want to go from to =1 to t5 = 1,5 in five
steps. You want g, where in each case Euler's formula is used

as a recursion formula:

= dy . ;
yi*l y1' + (dt)ti (ti+l ti)' [¢] i] _<_ 4

Since to = 1, t5 =
= 0.1 for

-

to choose each interval of length I% . Thus tl+l ti
all 0¢ 1 { 4 . Note that you need not choose the intervals of
equal length, but 1t does make computation slightly easier. When
equal intervals are chosen, each t,., - ti is the same number, and

1t is customary tp call this number h .
so , in this example

h=0.1= t1+1 - ti s

a
vyt (&

]

and  Yy43 )t - b

i

y1 + f(ti,yi) -n, ol ik

i

Now (g%) = pgives y(1.1) Sy, =¥+ 2" (0.1) = L.2.
t0
Continuing,
y(1.2) Ry, =y + f(tl’yl)(o'l)
= 1.2 + 2(1.1)(1.2)(0.1)

= 1.464
vy = 1.464 + 2(1.2)(1.464)(0.1)
= 1.81536 !
yy = 1.81536 + 2(1.3)(1.81536)(0.1)
- 2.2873536
y(1.5) =~ Vg = 2.2873536 + 2(1.u)(2.2873536)(0.1)

= 2.927812608

Thus increasing the number of intervals has increased the accuracy

= 1.5, and there are five intervals, it makes sense
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of your solution while, at the same time, increasing the amount of
computation you or a computer must do. If the computer must do the
calculating, you will not mind increasing the number of intervals,
otherwise, your feelings on the subject are obvious.

To keep data straight and to correct errors more quickly, you

will find a table of data helpful. Below is such a table for the

problem we just did.

1 ty ¥y

[ 1 1

1 1.1 1.2

2 l.2 1.h6l

3 1.3 1.81536

4 1.4 2.2873536

5 1.5 2.927812608
Exercises.

5.1. Find an approximate value for y(l1.5) in the example above if
the number of intervals is four, each having equal length. How
should this answer compare with the one we found using five intervals?

5.2. Consider the differential equation

H-H-20 , H(1) =25

a) Using five intervals of equal length, find an approximate
value for H(3) .

b) Solve the given differential equation by separating variables,

and find the exact value of H(3)
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§11. Three-Term Taylor Series.

Euler's method of the previous section gives a rather poor
approximation for solutions to differential equations unless
enormous numbers of intervals are used. However, the method does
suggest some more precise techniques. You see, Euler’'s method is
a linearization of a not-necessarily straight-line function. If

you look at a Taylor series for a function,

£(t) = £(tg) + £ (tg)(t-tg) + £"(t)(b-t)? 4.,

—_—

the first two terms of the Taylor series are also a linearization

-

of f(t), that is,

() = ftg) + £1(t5)(t-t,) = £lty) + £'(t ).
Thus Euler's method essentially uses the first two terms of Taylor's
expansion of the solution function of a differential equation. But
why stop after two terms when three will surely give a better
approximation? For the three-term Taylor method your recursion

formula should be

" 2
(6'1) yi+l = y1 + f’(ti.yi)h +f (ti'yi)h
2

The only new information you need is f". But, since you know

f' = £'(t,y) = y', you can find " from that,
Example 6.1. Return again to
y' = 2yt, y(1) = L.

The question is again to approximate y(1.5), where five intervals
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will be used. Thus h = 0.1. Next we need to find v"; by the
product and chain rules
y" = 2ty' + 2y.

The recursion formula (6.1) becomes

Yiqp T ¥yt 26y vy (0-1)

2ty (2t ) 2y;)(0.1)?

2
_ 2
SO0 Yy T ¥yt 0.2 ty yy + 0.01 (2t vy + yi), or
0.01
Yiep = Y1t (0.1)y; + £—5—-l yj - Use of a calculator and a

table like the one below helps. Data have been rounded off to

four decimals.

T "

i ty Y3 vy Y3

0 1.0 1.0 2 6

1 1.1 1.23 2.706  8.4132
2 1.2 1.5427 3.7025  11.9714
3 1.3 1.9728 — —

i 1.4 _— — P

5 1.5 3.4188

We have stopped the table above at y3. You should

continue the computation yourself until you get ys, the final
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answer, which we have provided.

Having now seen the three-term Taylor method and the Euler
method, you can use the fact that both of these are approximations
of power series to get an idea of how accurate they are.

Suppose, as our fnitial condition, we are given y(a), and we
are using Euler to approximate y(b), using subintervals of length h.
l.e., a = tg, ty = tg * Hooeaty = b. {Of course, h = Qﬁi) . At
each step, we are using the linear part of the Taylor series. The
error in each of these computations is

(- yr gy o2
i 2 ’
where Ei is chosen in the i-th subinterval. Since the computation
is iterated n times, our total error is bounded by
l~11%§l hz‘ “n = }~13%§l(b-a) h

Here £ s chosen in [a,b] to maximize y©, and we are using the

b-a
h
Since our error is bounded by an expression linear in h, we say

fact that n =

the error is of order h, where h is the length of the subintervals
used. By analogous reasoning, we find that the error in the three-term

Taylor method is of order hz. So, given a calculator or computer,

use Taylor.

Exercises
6.1 Finish the table in the example above by finting
yé, yg, Yqr y&, yx and Yg - Verify that, to eight decimals, Y is

the correct approximation by the three-term Taylor formula.

6.2 Use the three-term Taylor method to find a three decimal
approximation to the indicated value if h = 0.1,
a) y' o= 2x-y + 1, y(1) = 2, find y(1.5).

p) y' = e , y(0) = 0; find y(0,5).
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#12. The Runge-Kutta Meéhod.

In the last section we waw that the Euler and three-term Taylor
methods have errors on the orders of h and h2 , respectively,
where h 18 the length of the interval in the approximation. This
means that if we double the number of intervals {and therefore halve
each length), Euler's method will have about half as much error as
the original approximation, while Taylor's method will have one-
fourth the error. 1In this section we will consider a method of app-
roximation of solutions of differential equations whose error is on
the order of ha , making it highly accurate, since doubling the
number of intervals used in this method decreases the error by a fac-
tor of 16. 1In return, the method has a large disadvantage for hand

computation: 1t requires using values at four points at each stage

of computation.

Consider again y' = f(t,y) . The technique we show is called
the Runge-Kutta method (some books call it the fourth-order Runge-

Kutta method) and is based on finding appropriate constants a,b,c,d

so that
y1+1=yi+akl+bk2+ck3 +dku ’
where

-
i

1 = ety ovy)

-
]

1 1
hf(t1 + h , ¥y o+ ?kl)

_ 1 1
hf(t1 +3h, ¥y +5 k2)

wal
[

td
&
[}

hr(t, +h, y, + k).

The constants used in the method are

g:é,b=%‘,,c=%‘,d=é.
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This gives the recursion formula et !

(7-1) oy =y +E [ Ky + 2K, 2k 4 Xy) .
Without giving a dérivation of the Runge-Kutta formula, we note that
the expression in formula (7.1) above depends on kl’ kg, k3, ku, and
is a weighted average of these numbers (the weights being é, %, %, é),
Since each of kl’ ke, k3, kU' is a function of

y' = £(t,y), )
the function in the brackets is then a welghted average of the slope
evaluated at different points. Those of you who have seen Simpson's
rule for approximating integrals in a calculus course have already
seen a reduced form of the Runge-Kutta method; if f£(t,y) = £(t) ,
then k2 = k3 and

Vil = Yy b B [£(t) + B ety +3) + £(ty + h)],
which is Simpson's rule.

Example 7.1. Use Runge-Kutta on the example of the previous sections:
vy =2ty , y(1) = 1.

Find y(1.5) , and compare the answer with the approximate solutions

by Euler and Taylor, as well as with the exact solution given by int-

egration.

Solution: First we will compute kl through ku when 1 =0 . We

know that h = 0.1, to =1, Yo = 1 as before.

so Ky = hf(ty,yy) = (0.1) -2:1-1 = 0.2,
_ 1 1
ky= hE(ty + 30, vy + 5 k)
1 1
= he2(tg+zh, ¥+ 3k)

i

= (0.1) - 2(1.05) {(1.1) = 0.231

Ky = hE(to + 30, vy b3k '
= (0.1) - 2(1.05) (1.1055)

i

0. 234255
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Iy = hf(to +h , Yo *+ k3)
(0.1) - 2(1.1) (1.234255}%
0.2715361

[

Now we can find ¥y by (7.1) ,
Y= Vo * Lok + o2k, 4 2y + k)
1+ ¢ (0.2 + 0.462 + 0.46851 + 0.2715361)

it

1.23367435.
1.2337 (to four decimals).

i

i

Given ¥y we now must calculate new kl, k2, k3, ku to find y2 5

then continue through y5 . The table follows:

i ti ¥y

0 1.0 1.0

1 1.1 1.2337
2 1.2 1.5527
3 1.3 1.9937
b 1.4 2.6116
5 1.5 3.4902

Back in section 5 we found the actual answer to be y(1.5) = 3.4904.
Thus our approximation by the Runge-Kutta method 1s accurate through

the first three decimal places. Further, this compares with y5= 2.9278
by Euler, and ¥g = 3.4188 by three-term Taylor methods. Clearly,

if we are given a calculator, or better yet, a computer, Runge-Kutta
must be the preferred method. So learn it well!

Exercises

1.1. Use Runge-Kutta to find a three-decimal approximation to the

indicated value if h = 0.1.

a) y'-oxy+1, y(1) =2; find y(1.5)

~35-

b) y'= x+y>, y(0) =1
1.5. Use the formula for Simpson's rule given in this section to

6
approximate IO iy 4 x3 dx
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SOLUTIONS TO EXERCISES

Exercise 2

Tne separable eguations are-

#1. y in y dx + (l*xz)dy =0
f dx - o dy
e xt yoeny
(arctan x + ¢ = - an{in y) J

¥2. e Vdy = e Ydx
[ e Ydy = fe dx
eV = e+ ¢
tn(e™) = enle +C)

e i <y

[ X
by = -in{C+e "} |

¢3, #4 cannot be separated.

#5.  /y dy = 'QE:
x

v

— dx
sy dy = [——
f /2x

IRTLIN

y = (% /7% + C)Zl3 where C = 3C'

#6, #7, 48 cannot be separated.
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2
o, ¥, dy . ¢
dtz dt

we can separate this eaquation by making the following substitution’

2
dt

=g

(=%
=

¢nu = -t +C

or -t
{(note: This is not the same

Thus we get,

C

as above.

i
i

C.C' are arbitrary constants |

#10, #11, #12 cannot be separated.

2
d d
#13. x “‘ZY"‘ ayx‘= [¢]

dx
4
Ltet u ~ dy N du . dy the eqn. becomes,
; dx dx dxz
du .
X T% +u=90
du _ _ dx
u x
C c
ion is: .. dy . . 2
Solution is: u = or 3% p
A I

Exercise °.

e], 27 are ngr-homnqgencous

SE—'



or,

a4,

46,

47,

2 2
(x%+y“)dy - ydx = G

which reduces
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ot
[}

* o (_V/x)2

v o= y/x, = dy . dv i i
y VX.o gy v o+ oxgy with this substitution we get
2
v o+ x%l =
X 1+v2
dx . 1+
R et
vé-ver Y
an o x = &n v + Z arctan(2 ]
. —AV -5
V3 AL
1 - ; S
vanox o= ~in{y/x) - 2 arctan(—g'(y/x-]-)) + ci
: V3 /3 2 |

45 are non-homogeneous.

(xey/x+y)dx - xdy = 0
%% = ey/x +y/x, Tet v = y/x
x %¥—+v =¥ sy
fe"Vav = [%} ,e V= -inx ¢+ C
v = -en{C-2n x)
[z mte-on o) |
8, 29, #i0 are nogn-homogeneous .

S11. (x-2y)dy

-39~

+ y dx = 0

#13 is non-homogeheous".

gxercise &

#4. %lx+ 2y

dy + L
#7. dx * xy

multiply the

The first order linear equations are:

- e % multiply bY integrating factor eIz
ey = jezxe'xdx sg=e"+C
y = e X+ CQ—ZX\
sin X . . ; % dx
= = Integrating factor 15 €

equation by X and we' 1l obtain

xy = [sin x dx = -cos x + €
————
yys_go,srug\

dx

e

¢ s an arbitrary constant

2%

we'll get
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trercise © Talye
trercise = (xZs1je? - e* = ¢
The exact differenticz’' 2..2%10rs ara: Solving for y . the equation becomes,

28, x+yldx + (x+y“jay = ¢

l ,c-ex)
Y : P
Moz x3 R ( . '
Y vy : X ;
N -
411, (x-2y)dy + ydx = 0
. M 3N )
Since = = —— the equation is exact.
34 ax ) )
3f M=y N = x-2y
M= ‘;‘; = x+y , f(x,y) = /(x+y)dx + C{y)
2 ’ Moy ELI Exact
Flx,y) = 5+ yx + Cly) : 3y ax
we need to evaluate Cly) N - %5("y) S0 we get E A (xuy) = M. flx.y) = [ oydx = xy v cly)
» : ERS
x+y2 = x + c'{y) ' ] )
4 3 Al = x x -2y = x *+ c'{y)
e {y) =y . cly) = y'73 + ¢ | 5¥ )
2 ! .
So f(x,y} = %7 syx ¢y e cC | ely) = -y *+c¢
i
: 2
Since df = 0 we condlude f{x,y) = constant. Combining constants Const = yx -y *¢
e set P
or : Cmyx -y

2 3

L. Y. .
5 tyx o+ iy constant

o ! Exercise #6
cond order equations are:
310, (2xe’veX)dx + (x24l)eydy =0 The se
z
2 gy dp . d
M= 2xed + &” M= (xZe1)e) 49, g~§ N _%% -0 tet p - 3, E% i ;:%
L 2xe’ L 2xe” dt |
. - ' after substitution the eguation becomes,
d =
2! - 3N . 1 Exact ‘ a% . 0
ay X !
(t) = ¢ et
g’ i :
%; (x,y) = M = 2xe? + " | fx,y) = [(2xe? » e*ydx + cly) 1 ;
flx,y) = 2 v et s cly) also p = g% . c‘e-t integrating, we get
! L
N %§ BTN ¢ {y) , y(t) = - c,e oy
c'(Y) : ey e ey‘c : since -4 is arbitrary we write sympiy a5

?
“lx,y) = constant - sl vet et i LompInT “nntants we'll get

-
N
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=12. g;% e AT, 20wt 0 ) )
dx’? Exercise =7
et o -9 . then &y . de_dpdy_ do UL <o
dx ' de dx dv dx Pdy dtg A

Then the equation becomes, The corresponding algebraic equations is

d 2
p 2wty -0 rfai= o0 (re1)(r-1) =0
The solution is:
This equation is separable N
//“"“"‘” y = Ae~ + Be‘t!
p = c - wzyz ¢ s arbitrary -
d 2.2 sz o ty=0
bl oo Sy o
f Ay . d r2+1 =0 the roots are imaginary, * i.
/————‘“"z = X
Cyw Y So the solution is
- y = A‘e1t + Ble-lt
1 S .
o sin (= y) = x +¢
/c 1f we want the solution to be put in terms of real functions instead of
imaginary ones we can achieve this by using Euler’'s equation.
— it L.
y(x) = T sin (w(x+c')) e't - cos t e isint
. . e it 2 cos t - i sint
c, ¢' are arbitrary constants
yo=aetagle o (alugl) cos t o+ (al-gly i sin t
413 x d2 . dy . 0 . dy dp . d2 But A],B] are arbitrary , so we can write the above equation simply as:
dx dx * P dx * dx
dx
; [y = Acos t + B sin t}]
X QE +p =0 :
dx ; {A,B are arbitrary and may be compliex}
p = c/x |
dy . ¢ 43, y" 4 6y’ + 5y =0 rls6r+5=0
dx X
roots are -5, -1 . !

| = +
y ¢ Ln x [+ Solution is:

y = ae"3t + ge

-t
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S N AR ST St L ine 416 = o s s i o .
' y ' thus &'e'”? g g lr2ridx (A" +B' )e ZX Cos x - (A'-B et gq-

roots are 8,2
-2x

= Ae Zx

cos x + Be’ sin x

Now we can continue to write the entire solution

f
syt oy ey 20
- 4Y2 + 4 =0 E -2 -2x W7 x 6x 6x |
) ) \y = Ae cos x - Be sin x + Ce + pe” X - Exe’* + |
(r =vZ)" (r +,2)° =0 :
+ sz er - Gx396x + H i
r = +,77 Double root .
r = -/ 27 Double root
The solution is: 9. eiex = cos Bx + i sin Bx
l g - Ae.? X, 8xe'2 X, Ce-.?? . Dxe_'?? then
.
, P . e iBX ei(-e)x = cos (-Bx) + i sin (-Bx)
6. -3 vy =0
dx
dx But cos (-8x) = cos B8 x

(r-11%(r+2) = 0

ro= 1 double root sin (-Bx) = - sin B8 x

r=-2 So

| = Ae‘zx—iﬁée‘ + Cx et .i
= e18x=cos£%x-isin8x,‘i

[ —— SRR

27. (0-6)%(0+2-1)(D+2+i)(D-/Z)Dy = O
(ro6) (r-(i=2))(r=(=2-i))(r=vZ) r = 0

roots are
r==5 4 roots
ro= -2t complex conjugates
ro= -2-1
r=v’7 f
r =20

Before we write down the generalization, let's first express the solution

corresponding to the compliex roots 1in real form by using Euler's equation:
. , ;
that is, A‘e('z“)x + B'e -2ei)x is to be expressed in terms of
real functior:s
e(.ZH;x R 9-2:91: R G—Zx fcos r + i sin x

Tap ey S - oy
e TTTVIT L e - e ¢ icos v - 0 nia e
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y" + 2y’ - 3y = 6x * 2
First, look for the solution of the homogeneous equation
g2y -3y = 0 T (re3)(r-1) = 0

Solution is
vy ® pe 3 *ege™

1ook for a particular solution of the form

= + D
y, = cx
Ce ¢
Yp
T
yD

This solution must satisfy y; + Zyé - 3yp = fx+2
So we must have
2¢ - 3{cx+D) = 6x+2

equating coefficients -3¢ =6 , c = -2
-2

~
(2]
t
w
[}
a
o
E
H

So the entire solution is

-

|

1

+x

-3x
= = A X~
y yh+yp e +Be 2x-2

Wote: We don't multiply the solution yp by an arbitrary constant

" 2x
y'-y = e

The associated algebraic egn is: r 1 =0 (r+l){(r-1)
roots r = *1

solution Yy = Ae*+Be

Assume a particular solution is of the form,

2x
y = ce

dcezy

<
"

2x N . q 2 x 2x
= - = ce -
e yp YD ce
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50 3¢ =1, ¢ = -
3

-1 2x
v T3 e
General Solution is:
R ge X 4 % e2% |
i H
#3., y" -y = et
from above Yy * Ae* + Be™*

We cannot use e”

the homogeneous equation. So, try

Yp = cxe®
yé = cxe’ + cet
y; = cxe’ + 2ce”
Solving for c¢ ,
cxex + Zcex - cxex = ex
2c = 1, c = % Yy - % e

general solution is!

¥ y = Ae + Be ® 4+ % xe*

HARDER QUESTIONS

Question 2

(E), Mdx + Ndy = 0
vy . M
dx N

The solutions which correspond to curves perpendicular th

then satisfy

dy . N
dx M

as our particular since it is a solution to
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jchd gy - hax <
Low lets find the solution toO

2xydy + (x;-yzﬁdx =0

divide by xy

dy .

Trox
dx 2 X y

Use the substitution v = y/x ax v L

dv _ 1 1 dv . _(vo#)
VX gt 7 (v - ;) X p (~?;-)
v dx
% dv = -
vz:l x
1n(vz+l) = -gnx + C’
v2 =&
X
2, ¢
($723 M 1
y = ead (E-0)
The perpendicu\ar solution satisfy:
(y2~x2)dy + 2xydx = 0
dy . 2y - P
'd%—f'_’ )}__l
x -y y X
v = y/x
R LA 2y
v dx 1.y T-v
v
o dv _ 2v V(“V%l . !:v;N
s X o = & - - =
EER -~ Tov
2 .
f LY, 4y = %}
Vojev
The integral on the inft 15 solved by partiai

fractions.
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1 1-v° 1 2v
"'2 - K
Volev v vl
2
{ iy dv = in v - tnlvz¢1 s in —
‘ 7 2
v{l1+v") vo+l

So in ; = gnx + ¢’

+1

e o
v +]
or y = c(y2+x2)
Question =4
d2
F=ma=m ——% = -kx by Hooke's Law
dt
2 2 k .
«—% + %x = 0 r+v o Y
dt
¢ |»'=2i|/—i\z

So the real solution is
e /%
X C1 sin o t + Cz [+31 " t

We are given that the body is released from rest (x(0) = 0) at

A from equilibruim (x(0) = A). Using this data, we determine
and P
X = C //E cos/fg t - ¢ ./E sin/fg t
" m m 2" m m
so 0 = x(0) = ¢4 /r% . thus ¢ = 0

1

A = x(0) = c, S50 our solution is

{?;(t) = A cos /f% t

Question 5 ;

2
1 dl 1 dE
L - + R+ =1=
J:I dt ¢ dt
a. R =0, SE = wz £ = constant
divide by L.
dz "

MRS P
dtf

- -

a distance

%
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The solution is:
J—— ,
[ = ¢, cos wt + ¢, sin wt |
1 2 !
T
LI w2 , E = Asinat a# W
Lc
2
d 1 2 aA
+ w"] = 5= cos at
dt? ‘

splution to the homogeneous equation is:

The part

I = ¢
p

2
d !p

dt

Insert

ey

]h s <y cos wt + <, sin wt

jcular solution is of the form

3 cos at + ¢, sin at , need to find Cy » Ca
- 2 2 .

= -aCg cos at - a €y sin at

ing this into the equation we get

2+w2)c05at + cd(»a2+w2)sinat‘= %# cos at

-Qa
hence ¢, = 0
Co-ah 1
3 L 2 2
wo-a

So the solution is

1=, -1,

I, = ¢, cos wt + c, sin wt o+ S “T;Zfiﬁ

(oo - 1.2

{c; R g, e E
2
dt2

Ih = C] cos wt + C2 sin wt

assume a particular solution of

Ip = C3t Cos Wt

= - wc3 sin

+ de cos
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,

= L sin wt

4ty wzl = %? cos wt

the form,

+ C sin wt

4

wt - w2 C3t cos wt - wc3 sin wt

wt - w2C4 sin wt + w c4 cos wt.

N S .
Xp +wl = -ch3 sin wt + 2w C4 cos wt = %é cos wt
it foll h = =_A_.
i ollows that C3 0 and C4 7T
so I = At sin wt
p 2L
I = 1.+ 1 =2C, cos wt + C, sin wt + At sin wt
h p 1 2 2L




