

WORD PROBLEMS
IN ALGEBRA

- 1. A Cornell student walked six miles to class and was 1/4 hour late. If he had walked two miles per hour faster he would have been on time. What was his original speed?
- 2. A motorist drove 280 miles. If he had gone 5 m.p.h. faster he could have made his trip in 1 hr. less time, how fast did he drive?
- 3. If 1 1/2 chickens lay 1 1/2 eggs in 1 1/2 days, how many eggs do 6 chickens lay in 7 days?
- 4. A bridge looks like the graph of $y = -3x^2 + 12x + 8$. You have a 10 ft. high truck with a load 8 ft. wide. Can you make it under the bridge?
- 5. A bamboo 18 ft. high was broken by the wind. Its top bent over and touched the ground 6 ft. from the root. At what point along the length of the bamboo did the break occur?
- 6. Diophantus lived 1/6 of his life in childhood, 1/12 in youth, 1/7 more as a bachelor. 5 years after his marriage was born a son who died 4 years before his father, at half his father's final age. How old was Diophantus when he died? How old was his son when his son died?
- 7. At noon, a bus leaves Boston and travels due north at 40 m.p.h. At 2:00 p.m. a train leaves Boston and travels due west at 60 m.p.h. When are the bus and the train 200 miles apart?

socuu	. ·				
d	=rt	16= r(1	_	to time neces	sary = (3/4 hour)
		>6= (r+		r=original	sary = 3/4 hour
2	egas. w	ith 2 unk	nowns:	W	t to Committee
50 D	the tus	get an	equation for	t alone.	use for r in
<i>r-</i>	· 6 =>	$6: \left(\frac{6}{t+\frac{1}{4}}+2\right)$	t ⇒ (multipe	ly out) t=-10 no help in this problem	teste for r in $t = 34$.
Vh	en when	you have t	you can fin	$d r = \frac{6}{t + \frac{1}{4}}.$	
?. d	ert <	7 280 = U+	(5)(t-1))	Z=8, U	- 35
? Hen	1/2 h 1/2 h 1/2 h	ens lay ! hens lay hens lay ens lay	1/2 eggs in 1 eggs in 7 eggs in 7x4 eggs in	1/2 days 1 day 7 days 2 days	this is just one of maky ways to do this - its important & note what all 3 quantite do not change together
Growhi	apph Whe ch is a	Curve, y= parabola:	- 3x ² +12x+8 ×14 018	· ,	
a	X-intercept $-12\pm V_1$ -6 and just -6 -6 -6 -6 -6 -6 -6 -6	to, by quadrates 44 + 96 & There 2 points enough for	tomula 0 43 -3 are not spo Whe truck to	ced pass betwee	A.
. ×	64.	·x by fy	Vhagorean Vheore	m, (18-x)=x2+6	$\Rightarrow (x = 8 ft.)$
. Let X	= Diopha	ntus age at	death. Then		
chi	$\frac{x}{x} + \frac{x}{100}$	$+\frac{x}{7}+$	$5 + \frac{x}{2} +$ $arrived + son + yea$	4 = X usurived som. = 1	and (x = 84 yrs.) lifetime
7. •	200mi 60(t-2)	140 t		Theorem, a t)2+60(t-2)	
	60(t-2) u aftu n		solution: (t=	: 4 hours : .	4:00 PM)