Infinite Series Strategy Sheet

Table of Contents

- ↓ Infinite Series Strategy Sheet
 - ↓ Know the Famous Series
 - ↓ Test for Divergence
 - ↓ At best, you could be done already!
 - ↓ At worst, you'll have a great idea how to proceed:
 - Limit Comparison Test
 - ↓ Convergence Tests
 - ↓ What are the various Convergence Tests?
 - ↓ Which one should I use?

Know the Famous Series

Did I mention you should know the Famous Series?

- ↓ Famous Series
 - ↓ Geometric Series
 - ↓ P-Series
 - ↓ Harmonic Series
 - ↓ Alternating Harmonic Series
 - ↓ Exponential
 - ↓ Sin
 - ↓ Cos
 - ↓ In (1+x)
 - ↓ arctan (x)

Test for Divergence

Unless you immediately recognize a series (*e.g.* it's one of the <u>Famous Series</u>, or an obvious candidate for one of the <u>Convergence Tests</u>) always start with this one. Why?

At best, you could be done already!

If $\lim_{k\to\infty} u_k \neq 0$ then $\sum u_k$ diverges.

At worst, you'll have a great idea how to proceed:

If $\lim_{k\to\infty} u_k = 0$ then $\sum u_k$ you don't know what happens. **Despair Not!** Your work was not in vain.

- Ask yourself: **How** does u_k go to zero?
- In the limit, does *u_k* resemble terms in a famous series?
- Does the famous series have known convergence properties?
 - If so, the problem series almost certainly has similar convergence properties. Set up a comparison with the famous series. The Limit Comparison Test is usually a good bet here, since you've already been looking at a similar limit.
 - If not, go back and review Famous Series it's probably there.

Did I mention you should know the Famous Series?

Limit Comparison Test

If you don't find an easy match to a Famous Series, The Test for Divergence will almost always provide you with a Famous Series to use with the *Limit Comparison Test*. Set up the ratio between individual terms of the unknown series and the Famous Series and find the limit, *L*. If $0 < L < \infty$ then the two series behave the same. If *L* is 0 or ∞ with any luck, your Famous Series "wins" the limit of the ratio in a useful way:

- Your unknown series converges if it is clearly smaller than a convergent Famous Series -- think about it.
- Your unknown series diverges if it is clearly larger than a divergent Famous Series -- think about it.

Did I mention you should know the Famous Series?

Convergence Tests

What are the various Convergence Tests?

- ↓ Convergence Tests
 - ↓ Divergence Test
 - ↓ P-Series
 - ↓ Geometric Series and related tests.
 - ↓ Ratio Test
 - ↓ Ratio Test for Absolute Convergence
 - ↓ Root Test
 - ↓ Integral Test
 - ↓ Limit Comparison Test
 - ↓ Comparison Test
 - ↓ Alternating Series Test
 - ↓ Telescoping Series

Which one should I use?

You have a number of <u>Convergence Tests</u> available, and most series can be analyzed with more than one of them. The <u>Convergence Tests</u> page has guidelines for diagnosing when a test is likely to work on a particular

series.

-- DickFurnas - 17 Nov 2008

Topic revision: r1 - 2008-11-17 - DickFurnas

Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.

