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Every student of the integral caleulus has done hattle
with the formula
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This formula can be checked by differentiation or
“derived” by using the substitution u = sec #+tanf,
but these ad hoc methods do not make the formula
any more undenitandable. Experience has taught
us that this troublesome integral can be motivared
by presenting its history. Perhaps our title seems
twisted, but the tale to follow will show that this
integral should be i not as an appli of
mathematics to geography, but rather as an applica-
tion of geography to mathematics.

The secant integral arose from cartography and
navigati und its evaluation was a central gues-
tion of mid century h ics. The
first formula, discovered in 1645 before the work of
Newton and Leibniz, was

fsccﬂd9= In|tan(8/2 + 7/4)| + e (2}

wi'uch is a trigonometric variant of (1), This was

ered. not through any ician’s clever-
ucss, but by a serendipitous historical sccident when
i and car hers sought to under-

stand the Mercator map projection. To see how this
happened, we must first discuss sailing and early
maps so that we can explain why Mercator invented
his famous map projection.

From the time of Plolemy (c. 150 A.D) maps were
drawn on rectangular grids with one degree of lat-
itude equal in length to one degree of longiude.
When restricted to a small arca, like the Mediter-
ranean, they were accurate ecnough for sailors. But

in the age of exploration, the Atlantic p § vast

di and higher latitudes, and so the naviga-
tional errors due to using the “plain chans” became
apparent,

The magneti pass was in widespread use af-
ter Ih= thunnenlh century, so directions were con-
ly given by di and it bearing.

Lines of fixed compass direction were called rhonb
lines by sailors, and in 1624 Willebrord Snell dubbed
them foxodromes. To plan a journey one laid a
straightedge on a map between origin and destina-
tion, then read off the compass bearing to follow.
But rhumb lines are spirals on the globe and curves
on a plain chart — facts sailors had difficulty under-
standing. They needed a chart where the loxodromes
were represented as straight lines.

It was Gerardus Mercator (1512-1594) who
solved this problem by designing a map where the
lines of latitude were more widely spaced when lo-
cated further from the equator. On his famous world
map of 1569 ([1], p. 46), Mercator wrote:

In making this representation of the world we
had ...to spread on a plane the surface of the
sphere in such a way that the positions of places
shall correspond on all sides with each other
hoth in so far as true direction and distance
are concemed and as concerns correct longi-
tudes and latitudes ... With this intention we
have had to employ a new proportion and a new
arrangement of the meridians with reference to
the parallels .. .0t is for these reasons that we
have progressively increased the degrees of lat-
|tud= towards each pole in proportion to the

gthening of the parallels with refi o
the oqualof
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Mercator wished to map the sphere onto the plane
so that both angles and distances are preserved, but
he realized this was impossible. He opted for a con-
formal map (one which preserves angles) because,
as we shall see, it guaranteed that loxodromes would
appear on the map as straight lines,

Unfortunately, Mercator did not explain how he
“progressively increased” the distances between par-
allels of latitude. Thomas Harmot (c. 1560-1621)
gave & mathematical explanation in the late 15805,
but neither published his results nor influenced later
work (see [6], [11]-[15]). In his Certaine Errors in
Navigation ... [22] of 1599, Edward Wright (1561
1615) finally gave a mathematical method for con-
structing an accurate Mercator map. The Mercator
map has its meridians of longitude placed verti-
cally and spaced cqually. The parallels of latimde
are horizontal and unequally spaced. Wright's great
achievemen! was to show that the parallel at lati-
tude # should be stretched by a factor of sec # when
drawn on the map. Let us see why.

Figure | represents a wedge of the earth, where
AB 15 on the equator, ' is the center of the carth,
and 1" is the north pole. The parallel at latitude # is a
circle, with center P, that includes arc M N between
the meridians AT and BT. Thus BC and NP arc
parallel and so angle PNC = . The “triangles™
ABC and MNP are similar fi f‘gun:s S0

Ap BC NC
MN NP NP
or A} = M N secf, Thus when M N is placed on
the map it must be stretched horizontally by a factor
sec . (This argument is not the one used by Wright
[22]. His argument is two dimensional and shows

= see
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that BC = N Psecfl)

Suppose we can construct a map where angles
are preserved, ie., whm the globe-to-map function
is conformal. Then a loxod . which makes the
same angle with each meridian, \nII appear on this
map as a curve which cuts all the map’s meridians
(a family of parallel straight lines) at the same angle.
Since a curve that cuts a family of parallel straight
lines at a fixed angle is a straight line, loxodromes
on the globe will appear straight on the map. Con-
versely, if loxod are mapped to straight lines,
the globe-to-map function must be conformal.

In order for angles to be preserved, the map rnusl
be hed not only heri Ily, but also vertically,
by sec @; this, h i n by in-
finitesimals. Let D(ﬂ} be :he dlsta‘m:e on the map
from the equator to the parallel of latitude #, and
let dI} be the infinitesimal change in £ resulting
from an infinitesimal change dé in #. If we stretch
vertically by sec#, i.c., if

4D = see 0 db,

then an infinitesimal region on the globe becomes
a similar region on the map, and so angles are pre-
served. Conversely, if the map is to be conformal the
vertical multiplier must be sec .

Finally, “by perpetuall addition of the Secantes”,
to quote Wright, we see that the distance on the map
from the equator to the paraliel at latitude & 15

0
D{&}:fo sectdf.

OFf course Wright did not express himself as we have

here. He said ([2], pp. 312-313):
the parts of the meridian at every poynt of lat-
itude must needs increase with the same pro-
portion wh ith the S or hyp
of the arke, intercepted betweene those pointes
of latitude and the aequinoctiall [equator] do
increase ..., For ... by perpetuall addition of
the Secantes answerable to the latitudes of each
point or parallel vato the summe compounded
of all former secantes,...we may make a ta-
ble which shall shew the sections and points of
latitude in the meridians of the nautical planis-
phaere: by which sections, the parallels are to
be drawne.

Wright published a table of “meridional parts™ which

was obtained by taking dff = 1’ and then comput-

ing the Riemann sums for latitudes below 75, Thus
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the methods of ting M
became available to cartographers.

Wright also offered an interesting physical model,
Consider a cylinder tangent to the carth’s equator
and imagine the earth to “swal [swell) like a blad-
der”. Then identify points on the earth with the
points on the cylinder that they come into contact
with. Finally unroll the cylinder; it will be a Merca-
tor map. This model has often been misinterpreted
as the cylindrical projection (where a light source
at the earth’s center projects the unswollen sphere
onto its tangent cylinder), but this projection is not
conformal.

We have established ball of our result, namely
that the distance on the map from the equator to the
parallel at latitude # is given by the integral of the
secant. It remains to show that it is also given by
Inj| tzm(g + 3

In 1614 John Napier (1550-1617) published his
work on logarithms. Wright's authorized English
translation, A Deseription of the Admirable Table of
Logarithms, was published in 1616. This contained a
table of logarithms of sines, something much needed
by In 1620 Ed 1 Gunter (1581-
1626) published a table of common logarithms of
tangents in his Canon triangulorum. In the next
twenty years numerous tables of logarithmic tangents
were published and so were widely available. (Not
cven a table of sccants was available in Mercator's
day.)

¥n the 1640s Henry Bond (c. 1600-1678), who
advertised himself as a “teacher of navigation, sur-
vey and other parts of the mathematics™, compared
Wright's table of meridional parts with a log-tan ta-
ble and discovered a close agreement. This serendip-
itous accident led him to conjecture that

(3 3)]

He published this conjecture in 1645 in Norwood's
Epitome of Navigation. Mainly through the corre-
spondence of John Collins this conjecture became
wtdely known. In fact, it became one of the out-
g open probl of the mid 'cen-
tury, and was wpted by such !
cians as Collins, N. Mercator (no relation), Wilson,
Oughtred, and John Wallis. It is interesting to note
that young Newton was aware of it in 1665 [18],
[21].
The “Learned and Industrious Nicolaus Mercator™
in the very first volume of the Philosophical Trans-
actions of the Royal Society of London was “willing

"s “true chart”

D(#)=1n

to lay a Hager against any one or more persons that
have a mind to engage... Whether the Artificial
[logarithmic] Tangeni-line be the true Meridian-line,
vea or no?” ([9], pp. 217-218). Nicolaus Mercator
is not, as the story is often told, wagering that he
knows more about logarithms than his contempo-
raries; rather, he is offering a prize for the solution
of an open problem.

The first 1o prove the conjecture was, fo quote
Edmond Halley, “dm excellent Mr. James Gre-
gory in his £ O icae, published
Anno 1668, which he did, not without a Jong train
of Consequences and Complication of Proportions,

hereby the evid of the D ion is in a
great measure lost, and the Reader wearied before he
anain it” ({7), p. 203). Judging by Tumbull's modern
elucidation [19] of Gregory’s proof, one would have
to agree with Halley. At any rate, Gregory's proof
could not be presented to today’s calculus students,
and so we omit it here.

Isaac Bamrow (1630-1677) in his Geomerrical
Lectures (Lect. XII, App. 1) gave the first “intel-
ligible™ proof of the result, but it was couched in
the geometric idiom of the day. It is especially note-
wunh)l in that it is the earliest usc of partial fractions
in mtcg;raum_ Thus we reproduce it here in modem

cosfl
f’“"‘*“’ fm“” fos’ti'

—rdﬂ
1—sin"#

cos
"fu-mm(ume)d"
_ 1 cos cosd

=3/ T=vnd " Trema ™

= %[—1n|1—sin9| +In|l+sind|] + e
= %In[[l +sin®)/(1 - sind)| + ¢

= %Inl(l +sin®)?/(1 = sin® @)| + ¢

= % ln|(1 + sin®)?/ cos® 8] + ¢
=In|(l +sin@)/cosd| + ¢
= In|secd + tanf| + e
We became interested in this topic afier noting
one line of historical comment in Spivak's excellent
Calculus (p. 326). As we ferreted out the details and

shared them with our students, we found an ideal
soapbox for discussing the nature of mathematics,
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the process of mathematical discovery, and the role
that mathematics plays in the world. We found this
s0 useful in the classroom that we have prepared a
more detailed version for our students [17).
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