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1 Introduction

Just as trig functions arise in many applications, so do the inverse trig functions. What
may be most surprising is that the inverse trig functions give us solutions to some common
integrals. For example, suppose you need to evaluate the integral∫ b

a

1√
1− x2

dx

for some appropriate values of a and b. You can use the inverse sine function to solve it! In
this capsule we do not attempt to derive the formulas that we use; you should look at your
textbook for derivations and complete explanations. This material simply summarizes the
key results and gives examples of how to use them. As usual, all angles used here are in
radians.
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2 Restrictions on the Domains of the Trig Functions

A function must be one-to-one for it to have an inverse. The trig functions are not one-to-
one and in fact are periodic (i.e. their values repeat themselves periodically). In order to
define inverse functions we need to restrict the domain of each trig function to a region in
which it is one-to-one and also attains all of its values. We do this by selecting a specific
period for each function and using this period as a restricted domain on which an inverse
function can be defined. There are an infinite number of different restrictions we could
chose, but the following are the ones that are normally used.

Standard Restricted Domains for Trig Functions
Function Domain Range

sin(x) [−π
2 , π

2 ] [−1, 1]

cos(x) [0, π] [−1, 1]

tan(x) (−π
2 , π

2 ) (−∞,∞)

cot(x) (0, π) (−∞,∞)

sec(x) [0, π
2 ) ∪ (π

2 , π] (−∞,−1] ∪ [1,∞)

csc(x) [−π
2 , 0) ∪ (0, π

2 ] (−∞,−1] ∪ [1,∞)

3 Definitions of the Inverse Functions

When the trig functions are restricted to the domains above they become one-to-one func-
tions and we can define the inverse functions. For the sine function we use the notation
sin−1(x) or arcsin(x) to denote the inverse function. Both are read “arc sine”. Look care-
fully at where we have placed the -1. Written this way it indicates the inverse of the sine
function. If, instead, we write (sin(x))−1 we mean the fraction 1

sin(x) . The other inverse
functions are denoted in a similar way.

The following table summarizes the domains and ranges of the inverse trig functions.
Note that for each inverse trig function we have swapped the domain and range of the
corresponding trig function.
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Standard Domains and Ranges for Inverse Trig Functions
Function Domain Range

sin−1(x) [−1, 1] [−π
2 , π

2 ]

cos−1(x) [−1, 1] [0, π]

tan−1(x) (−∞,∞) (−π
2 , π

2 )

cot−1(x) (−∞,∞) (0, π)

sec−1(x) (−∞,−1] ∪ [1,∞) [0, π
2 ) ∪ (π

2 , π]

csc−1(x) (−∞,−1] ∪ [1,∞) [−π
2 , 0) ∪ (0, π

2 ]

Now define the arcsin function by

y = sin−1(x) if and only if x is in [−1, 1], y is in [−π
2 , π

2 ], and sin(y) = x

Note that sin−1(x) is only defined when x is in the interval [−1, 1]. The other inverse
functions are defined similarly, using the corresponding trig functions and their restricted
domains.

4 Some Useful Identities

Here are a few identities you may find helpful.

cos−1(x) + cos−1(−x) = π

sin−1(x) + cos−1(x) = π
2

tan−1(−x) = −tan−1(x)

5 Practicing with the Inverse Functions

Example 1: Find the value of tan(sin−1(1
5)).

Solution: The best way to solve this problem is to draw a triangle and use the Pythagorian
Theorem.

θ   
   

   
   

   
    5

1

2
√

6

3



Here we let θ represent the value of sin−1(1
5). Label the hypotenuse and the side opposite

θ by using the value of the sin of the angle θ. Next use the Pythagorian Theorem to get
the remaining side. You now have the information that is needed to find tan(θ). Since
tan(θ) = opposite

adjacent , the answer is 1√
24

= 1
2
√
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Example 2: Find the value of sin(cos−1(−3
5)).

Solution: Look at the following picture:

θ
S
S
S
S
S
S
S

4
5

- 3

In this picture we let θ = cos−1(−3
5). Then 0 ≤ θ ≤ π and cosθ = −3

5 . Because cos(θ)
is negative, θ must be in the second quadrant, i.e. π

2 ≤ θ ≤ π. Using the Pythagorean
Theorem and the fact that θ is in the second quadrant we get that sin(θ) =

√
52−32

5 =
√

25−9
5 = 4

5 . Note that although θ does not lie in the restricted domain used to make sin(x)
one-to-one, the unrestricted sin function is defined in the second quadrant and so we are
free to use this fact.

6 Derivatives of Inverse Trig Functions

The derivatives of the inverse trig functions are shown in the following table.

Derivatives
Function Derivative

sin−1(x) d
dx(sin−1x) = 1√

1−x2
, |x| < 1

cos−1(x) d
dx(cos−1x) = − 1√

1−x2
, |x| < 1

tan−1(x) d
dx(tan−1x) = 1

1+x2

cot−1(x) d
dx(cot−1x) = −1

1+x2

sec−1(x) d
dx(sec−1x) = 1

|x|
√

x2−1
, |x| > 1

csc−1(x) d
dx(csc−1x) = −1

|x|
√

x2−1
, |x| > 1
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In practice we are often interested in calculating the derivatives when the variable x is
replaced by a function u(x). This requires the use of the chain rule. For example,

d

dx
(sin−1u) =

1√
1− u2

du

dx
=

du
dx√

1− u2
, |u| < 1

The other functions are handled in a similar way.

Example 1: Find the derivative of y = cos−1(x3) for |x3| < 1

Solution: Note that |x3| < 1 if and only if |x| < 1, so the derivative is defined whenever
|x| < 1.

d

dx
(cos−1(x3)) = − 1√

1− (x3)2
�

d

dx
(x3)

= − 1√
1− (x3)2

� (3x2)

= − 3x2

√
1− x6

Example 2: Find the derivative of y = tan−1(
√

3x).

Solution:

d

dx
(tan−1(

√
3x)) =

1

1 + (
√

3x)
2 �

d

dx
(
√

3x)

=
1

1 + (
√

3x)
2 �

1
2
√

3x
� 3

=
3

2
√

3x (1 + 3x)

Exercise 1: For each of the following, find the derivative of the given function with respect
to the independent variable.

(a) y = tan−1 t4

(b) z = t cot−1(1 + t2)

(c) x = sin−1
√

1− t4

(d) s = t√
1−t2

+ cos−1t
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(e) y = sin−1√x

(f) z = cot−1( y
1−y2 )

Solutions:

(a) y = tan−1 t4

dy

dt
=

d

dt
tan−1 (t4)

=
1

1 + (t4)2
�

d

dt
(t4)

=
4t3

1 + t8

(b) z = t cot−1(1 + t2)

dz

dt
=

d

dt
t cot−1(1 + t2)

= cot−1(1 + t2) + t �
−1

1 + (1 + t2)2
� (2t)

= cot−1(1 + t2)− 2t2

t4 + 2t2 + 2

(c) x = sin−1
√

1− t4

dx

dt
=

d

dt
sin−1

√
1− t4

=
1√

1− (
√

1− t4)
2

�
d

dt
(
√

1− t4)

=
1√

1− (1− t4)
�

1
2

� (1− t4)
−1
2 � (−4t3)

=
1√

1− 1 + t4
�

1√
1− t4

� (−2t3)

=
1
t2

�
1√

1− t4
� (−2t3)

=
−2t√
1− t4

6



(d) s = t√
1−t2

+ cos−1t

ds

dt
=

d

dt

t√
1− t2

+
d

dt
cos−1t

=
(
√

1− t2) � 1− t � 1
2(1− t2)

−1
2 � (−2t)

(
√

1− t2)2
+

−1√
1− t2

=

√
1− t2 + t2√

1−t2

(1− t2)
− 1√

1− t2

=
(
√

1− t2)(
√

1− t2) + t2

(
√

1− t2)(1− t2)
− (1− t2)

(1− t2)
�

1
(
√

1− t2)

=
(1− t2) + t2 − (1− t2)

(
√

1− t2)(1− t2)

=
t2

(1− t2)
3
2

(e) y = sin−1√x

dy

dx
=

d

dx
sin−1√x

=
1√

1− (
√

x)2
�

d

dx

√
x

=
1√

1− x
�

1
2
x
−1
2

=
1

2
√

x(1− x)
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(f) z = cot−1( y
1−y2 )

dz
dy = d

dy cot−1( y
1−y2 )

= −1
1+( y

1−y2 )2
� d

dy ( y
1−y2 )

= −1
(1−y2)2+y2

(1−y2)2

� d
dy ( y

1−y2 )

= −(1−y2)2

(1−y2)2+y2 � (1−y2) � 1 − y � (−2y)
(1−y2)2

= −1
(1−y2)2+y2 � (1−y2) � 1 − y � (−2y)

1

= −1(1−y2+2y2)
1−2y2+y4+y2

= −(1+y2)
1−y2+y4

7 Solving Integrals

The formulas given for the derivatives lead us to nice ways to solve some common integrals.
The following is a list of useful ones. These formulas hold for constants a 6= 0

∫
du√

a2−u2
= sin−1(u

a ) + C for u2 < a2

∫
du

a2+u2 = 1
a tan−1(u

a ) + C for all u∫
du

u
√

u2−a2
= 1

asec−1|ua |+ C for |u| > a > 0

Exercise 2: Verify each of the equations above by taking the derivative of the right hand
side.

We now want to use these formulas to solve some common integrals.

Example 1: Evaluate the integral
∫

dx√
9−16x2

Solution: Let a = 3 and u = 4x. Then 16x2 = (4x)2 = u2 and du = 4dx. We get the
following for 16x2 < 9:
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∫
dx√

9−16x2
= 1

4

∫
du√

a2−u2

= 1
4sin−1(u

a ) + C

= 1
4sin−1(4x

3 ) + C

= 1
4sin−1(4

3x) + C

Exercise 3: Evaluate the following integrals.

(a)
∫

dx√
25−4x2

(b)
∫ dy

36+4y2

(c)
∫

z dz
5+2z4

(d)
∫

sin x dx√
10−cos2 x

(e)
∫

dx√
5+4x−x2

(f)
∫

7 dx
25−12x+4x2

Solutions:

(a)
∫

dx√
25−4x2

. For this problem use the formula
∫

du√
a2−u2

= sin−1 u
a + C with

a = 5, u = 2x and du = 2 dx, giving you
∫

dx√
25−4x2

= 1
2

∫
du√

a2−u2
= 1

2sin−1(2x
5 ) + C

(b)
∫ dy

36+4y2 . Use the formula
∫

du
a2+u2 = 1

a tan−1(u
a ) + C with a = 6, u = 2y

and du = 2 dy.

This gives us
∫ dy

36+4y2 = 1
2

∫
du

a2+u2 = (1
2)(1

6) tan−1(2y
6 ) + C = 1

12 tan−1(y
3 ) + C

(c)
∫

z dz
5+2z4 . In order to make the calculations a bit simpler, it is useful to multiply

the numerator and denominator by 2 in order to get the term 4z4 instead of 2z4 in the
denominator. This gives us

∫
z dz

5+2z4 =
∫

2z dz
10+4z4 .

Now let u = 2z2, du = 4z dz and a =
√

10 and we have∫
z dz

5+2z4 = 1
2

∫
4 z dz

10+4z4 = 1
2

∫
du

(
√

10)
2
+u2

= 1
2
√

10
tan−1( 2z2

√
10

) + C

(d)
∫

sin x dx√
10−cos2 x

. Let u = cos x, du = −sin x dx and a =
√

10. Then∫
sin x dx√
10−cos2 x

= (−1)
∫ − sin x dx√

10−cos2x
= − sin−1( cos x√

10
) + C
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(e)
∫

dx√
5+4x−x2

. Transform this expression into something with the

form
∫

du√
a2−u2

. To do this we need to complete the square of the expression in the

denominator as follows:

5 + 4x− x2 = 5 + 4− 4 + 4x− x2

= 9− 4 + 4x− x2

= 9− (x2 − 4x + 4)

= (3)2 − (x− 2)2

This gives us∫
dx√

5+4x−x2
=

∫
dx√

(3)2−(x−2)2
= sin−1(x−2

3 ) + C

(f)
∫

7 dx
25−12x+4x2 . Complete the square and transform the expression into

something with the form
∫

du
a2+u2 . Rewrite the denominator as follows:

25− 12x + 4x2 = 16 + 9− 12x + 4x2

= (4)2 + (2x− 3)2

Now, letting u = 2x− 3 and du = 2 dx we get∫
7 dx

25−12x+4x2 = 7
2

∫
2 dx

(4)2+(2x−3)2
= 7

8 tan−1(2x−3
4 ) + C

10


