FAMOUS SERIES

a) Geometric Series
$$1+x+x^2+x^3+...$$
 (converges if $|x|<1$) NOTE: sum is $1/(1-x)$ for $|x|<1$ (diverges if $|x|>1$)

b) P - Series
$$\sum \frac{1}{n^p}$$
 (diverges for $p \le 1$)

c) Harmonic Series
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 (diverges)

d) Alternating Harmonic Series
$$1 \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{5} \cdot \dots$$
 (converges)

e)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

f)
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

g)
$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

h) in
$$(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ...$$

i)
$$tan^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

Notes:

e,f,g:
$$e^{x} = \cos(ix) - i\sin(ix)$$
 where $i = \sqrt{-1}$

h,d: x=1 in h) yields d) so the sum of the Alt. Harm. Series is ln(1+1)=ln2

h,c: informally, x = -1 makes h) blow up (in 0) in accordance with what we know about

b,c: c) is a special case of b) with p = 1

a: sum of a) is 1/(1 - x) for |x| < 1

a: sum of a) is
$$1/(1-x)$$
 for $|x| < 1$
h,a: h) may be found by integrating a) with x=-t: $\int \frac{1}{1-(-t)} dt = \int \frac{1}{1+t} dt = \int 1-t+t^2-t^3 + ... dt$

i,a: i) may be found by integrating a) with
$$x=-t^2$$
: $tan^{-1}x = \int \frac{1}{1+t^2} dt = \int 1-t^2+t^4-t^6+t^8$ -...dt

Useful Limits

a)
$$\lim_{h\to 0} (1+h)^{1/h} = 0$$

b)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = 0$$

c)
$$\lim_{n \to \infty} (1 - \frac{1}{n})^n = e^{-1}$$
 note: c) is a special case of d) with $x = -1$

d)
$$\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x$$

e)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
 if $p>0$

f)
$$\lim_{n\to\infty} x^n \begin{cases} = 0 \text{ if } |x| < 1 \\ \text{diverges if } |x| > 1 \end{cases}$$

g)
$$\lim_{n\to\infty}\frac{x^n}{n!}=0$$
 for all x

h)
$$\lim_{n\to\infty} x^{1/n} = 1$$
 for $x > 0$

i)
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$
 (limit of a sum is the sum of the limits)

k)
$$\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n)$$
 (limit of a product is the product of the limits)

l)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{1}{\lim_{n\to\infty} b_n}$$
 (denom. $\neq 0$) (limit of a quotient is the quotient of the limits)

m) "Flyswatter Theorem": if
$$a_n \le b_n \le c_n$$
 and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$

the ratio of leading coefficients if of same degree 0 if degree of denominator larger

Useful Inequalities

- a) $|\sin(x)| \le 1$
- b) $|\csc(x)| \ge 1$
- c) $|\cos(x)| \le 1$
- d) $|\sec(x)| \ge 1$
- e) $|\sin(x)| \le |\tan(x)|$
- f) $n^2 + 1 \le (n+1)^2$

"eventually"

- g) $\ln n > 1$
- h) $\ln n < n^k$ for any k > 0
- i) n > 1 (!) Don't forget this when using TD
- Often the hardest part of showing convergence or divergence of a series is the indecision: What do I believe it does? After all, if you try to show a series converges when it actually diverges, you'll have difficulty!
- The limits of the last section can help a lot with the Test for Divergence. Together
 with inequalities you can often get an idea of what to try to show. If the individual
 terms of the series "look like" n³/n⁴ as n → ∞, then the series "looks like" 1/n and so
 you want to show it diverges.
- Many limits boil down to "look like" ratios of polynomials after stripping out trig functions using the inequalities above.
- h) leads to the peculiar rule of thumb that in ratios In n "looks like" 1 since any positive power of n will dominate it. For example, when you see

$$\sum \frac{\ln n}{n^2}$$
, think $\sum \frac{1}{n^2}$ to see that it converges.

Show it <u>carefully</u> by using $\ln n < \sqrt{n}$, "eventually"

So
$$\sum \frac{\ln n}{n^2} < \sum \frac{\sqrt{n}}{n^2} = \sum \frac{1}{n^{3/2}}$$
, a convergent p-series

New Series From Old

If you have a series expression, you can instantly create new, interesting series using all the techniques you have to create new functions from old familiar ones.

Multiply it by a constant

Before:
$$1 + x + x^2 + x^3 + ...$$
 = $1/(1-x)$

After:
$$a + ax + ax^2 + ax^3 + ...$$
 (mult. by a) = $a(1/(1-x)) = a/(1-x)$

Substitute an expression for x: (e.g. let $x = -t^2$)

Before:
$$1 + x + x^2 + x^3 + ...$$
 = $1/(1-x)$

After:
$$1-t^2+t^4-t^6+...$$
 = 1/(1+t²)

Before:
$$1 + x + x^2 + x^3 + ...$$
 = $1/(1-x)$

After:
$$x^2 + x^3 + x^4 + x^5 + ...$$
 = $x^2/(1-x)$

Integrate an Expression:

Before:
$$1-x+x^2-x^3+x^4-...$$
 = $1/(1+x)$

After:
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ...$$
 = $\int \frac{1}{1+x} dx = -\ln|1+x|$

Differentiate an Expression:

Before:
$$1 + x + x^2 + x^3 + ...$$
 = $\frac{1}{(1 - x)}$
After: $0 + 1 + 2x + 3x^2 + 4x^3 + ...$ = $\frac{d}{dx} \cdot \frac{1}{1 - x} = (1 - x)^{-2} = \frac{-1}{(1 - x)^2}$

NAME	STATEMENT	COMMENTS
Divergence test	If $\lim_{k\to+\infty} u_k \neq 0$, then $\sum u_k$ diverges.	If $\lim_{k \to \infty} u_k = 0$, $\sum u_k$ may or may not converge.
Integral test	Let $\sum u_k$ be a series with positive terms and let $f(x)$ be the function that results when k is replaced by x in the formula for u_k . If f is decreasing and continuous for $x \ge 1$, then $\sum_{k=1}^{n} u_k \text{and} \int_{1}^{+\infty} f(x) dx$	Use this test when $f(x)$ is easy to integrate.
-	both converge or both diverge.	
Comparison test	Let $\sum a_k$ and $\sum b_k$ be series with positive terms such that	Use this test as a last resort. Other tests are often easier to apply.
	$a_1 \le b_1, a_2 \le b_2, \dots, a_k \le b_k, \dots$ If $\sum b_k$ converges, then $\sum a_k$ converges; and if $\sum a_k$ diverges, then $\sum b_k$ diverges.	
Ratio	Let $\sum u_k$ be a series with positive	
	terms and suppose	
	$\lim_{k \to \infty} \frac{u_{k+1}}{u_k} = \rho$ (a) Series converges if $\rho < 1$. (b) Series diverges if $\rho > 1$ or $\rho = +\infty$.	Try this test when a_k involves factorials or kth powers.
	(c) No conclusion if $\rho = 1$.	

NAME	STATEMENT	COMMENTS
Root	 Let ∑u_k be a series with positive terms such that ρ = lim √u_k (a) Series converges if ρ < 1. (b) Series diverges if ρ > 1 or ρ = +∞. (c) No conclusion if ρ = 1. 	Try this test when u _k involves kth powers.
Limit comparison test	Let $\sum a_k$ and $\sum b_k$ be series with positive terms such that $\rho = \lim_{k \to +\infty} \frac{a_k}{b_k}$ If $0 < \rho < +\infty$, then both series converge or both diverge.	This is easier to apply than the comparison test, but still requires some skill in choosing the series $\sum b_k$ for comparison.
Alternating series test	The series $a_1 - a_2 + a_3 - a_4 + \cdots$ and $-a_1 + a_2 - a_3 + a_4 - \cdots$ converge if (a) $a_1 \ge a_2 \ge a_3 \ge \cdots$ (b) $\lim_{k \to +\infty} a_k = 0$	This test applies only to alternating series.
Ratio test for absolute convergence	 Let ∑ u_k be a series with ponzero terms such that ρ = lim u_{k+1} u_k (a) Series converges absolutely if ρ < 1. (b) Series diverges if ρ > 1 or ρ = +∞. (c) No conclusion if ρ = 1. 	to use this test.

note:

Stil need teleserping series

"I" periez : Z nt {Difp=1

Difp=1

A geometrie series: Z x n-1 { to i-x \ \ |x|<|}

N=1

N=1

N=1

N=1

N=1

Infinite Series Workshop Fact Sheet

Geometric Series: With c a constant, $\sum_{n=0}^{\infty} cx^n = c/(1-x)$ if and only if |x| < 1. Otherwise, it diverges.

p-series: With c a constant, $\sum c/n^p$ diverges for p 4 1.

Test for Divergence: (TD) \(\sum_{a_n} \) diverges if \(\sum_{n=0}^{\text{lim}} a_n \) = 0. Another way of saying this is: If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$. It does not say that if $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ converges.

Integral Test: (IT) If f is a continuous function that is positive and decreasing for $x \ge 1$, and $f(n) = a_n$ (for n = 1,2,3,...), then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \Leftrightarrow \int_1^{\infty} f(x) dx \text{ converges}$$

<u>Basic Comparison Test</u>: (BCT) Let $\sum a_n$ and $\sum b_n$ be two series such that 04an4bmfor large n. Then $\sum b_n$ converges $\Rightarrow \sum a_n$ converges, and $\sum a_n$ diverges $\Rightarrow \sum b_n$ diverges.

Limit Comparison Test: (LCT) Suppose \(\Sigma_n \) and \(\Sigma_n \) are positive series and that $\lim_{n \to \infty} (a_n/b_n) = L$.

- 1. If L > 0 (and L ≠ ∞), then if either series converges (diverges), then so does the other (i.e. they do the same thing).
- 2. If L = 0, then if $\sum b_n$ converges, then so does $\sum a_n$; if $\sum a_n$ diverges, so
- 3. If L = ∞ , then if $\sum a_n$ converges, then so does $\sum b_n$; if $\sum b_n$ diverges, so does \ an.

Ratio Test: (RAT) For a series $\sum a_n$, let $p = \lim_{n \to \infty} (|a_{n+1}|/|a_n|)$; then

 $\rho < 1 \Rightarrow \sum a_n$ converges absolutely

 $\rho > 1 \Rightarrow \sum a_n$ diverges

p = 1 - test fails to distinguish

Root Test: (ROOT) For a series $\sum a_n$, let $p = \lim_{n \to \infty} \sqrt{|a_n|}$; then

 $\rho < 1 \Rightarrow \sum a_n$ converges absolutely

 $p > 1 \Rightarrow \sum a_n \text{ diverges}$

p = 1 → test fails

Alternating Series Test: (AST) $\sum_{n=0}^{\infty} (-1)^{n-1} a_n$ converges if the sequence a,a,a,... decreases to the limit 0.

Series Workshop Practice Sheet (Covers Gillett 12.2 - 12.6)

Part I: Find the sum of the following series, if they converge:

1.
$$\sum_{n=2}^{\infty} e^{-n}$$
 2. $\sum_{n=2}^{\infty} (n/3)^n$ 3. $\sum_{n=1}^{\infty} \ln (n/n+1)$ 4. $\sum_{n=1}^{\infty} (2/3)^n$ 5. $\sum_{n=1}^{\infty} 2/(2n+1)(2n+3)$

Part II: Determine whether the following infinite series converge or diverge and state which test you are using.

1.
$$\sum 4/2^n$$

2.
$$\sum (1 + 1/n)$$

1. $\sum 4/2^n$ 2. $\sum (1 + 1/n)^n$ 3. $\sum 5^{2n}/n!$ 4. $\sum \cos^2 n/n^3$

5.
$$\sum 1/\sqrt{n^2-2}$$
 6. $\sum 3/n^2/3$ 7. $\sum n^2/2^n$ 8. $\sum ne^{-n}$

9.
$$\sum 2/(\sqrt{n}+1)$$
 10. $\sum_{n=1}^{\infty} \cos(\pi n)/n$ 11. $\sum n/\ln(n)$ 12. $\sum 1/\sqrt{n^2+2}$

11.
$$\sum n/\ln(n)$$
 12. $\sum 1/\sqrt{n^2+1}$

13.
$$\sum_{n=0}^{\infty} (-1)^n / \sqrt{n^2 - 1}$$
 14. $\sum_{n=0}^{\infty} (\sin^4 n / 3)^n$

15.
$$\sum \ln(n)/n$$
 16. $\sum 1/\sqrt[4]{n^4-2}$ 17. $\sum (3n^4+5n^3+2)/(n^2-1)(n^2+1)$

18.
$$\sum_{n=1}^{\infty} (1/2 + 1/n)^n$$

Part III: Find all values of x for which the following series converge:

1.
$$\sum (x-2)^n/n^2$$

2.
$$\sum x^{2n-1}/(2n-1)!$$

Solutions to Series Practice Sheet

Part I:

- 1. $\sum_{e=n}^{\infty} e^{-n} = \sum_{e=0}^{\infty} (1/e)^n = 1/(1-1/e) = e/(e-1)$ (geometric series)
- 2. $\sum_{n=0}^{\infty} (\pi/3)^n$; $|\pi/3| > 1$, so series is divergent geometric series.
- 3. $\sum_{n=1}^{\infty} \ln (n/n+1) = \sum_{n=1}^{\infty} \ln(n) \ln(n+1)$, so $S_n = 0 \ln 2 + \ln 2 \ln 3 + \ln 3 \ln 4 + ... + \ln(n) \ln(n+1)$. Thus $\lim_{n\to\infty} S_n = \lim_{n\to\infty} -\ln(n+1) = -\infty$, so series diverges.
- 4. $\sum_{n=1}^{\infty} (2/3)^n = -1 + \sum_{n=0}^{\infty} (2/3)^n = -1 + (1/(1-(2/3))) = -1+3 = 2.$ (\sum_{n=0}^{\infty} (2/3)^n is a geometric series with |2/3| < 1).
- 5. $\sum_{n=3}^{\infty} \frac{2}{(2n+1)(2n+3)} = \sum_{n=3}^{\infty} \frac{1}{(2n+1)} \frac{1}{(2n+3)}$ (partial fractions), so $S_n = \frac{1}{3} \frac{1}{3$ (1/(2n+3)) = (1/3)-(1/(2n+3)). So $\sum_{n=0}^{\infty} 2/(2n+1)(2n+3) = \lim_{n\to\infty} S_n = 1/3$.

Part II: (There are often several ways to do these, but there is always only one answer.)

- 1. $\sum 4/2^n = \sum 4(1/2)^n$, a convergent geometric series.
- 2. $\sum (1+1/n)^n$ diverges by TD, since $\lim_{n\to\infty} (1+1/n)^n > 1 \neq 0$ [Note: THIS DOES = c]
- 3. $\sum 5^{2n}/n!$ converges by RAT.
- 4. $\sum \cos^2 n/n^3$ converges by BCT; $(\cos^2 n/n^3) \le (1/n^3)$ and $\sum (1/n^3)$ converges (p-series, p > 1)
- 5. $\sum 1/\sqrt{n^2-2}$ diverges by BCT; $(1/\sqrt{n^2-2}) \ge (1/n)$ and $\sum (1/n)$ diverges. (harmonic series)
- 6. $\sum 3/n^2/3$ is a divergent p-series, p = (2/3) < 1.
- 7. ∑n²/2ª converges by RAT.
- 8. $\sum ne^{-n} \frac{\text{converges}}{\text{b} + m} \text{ b} = -\pi dx$ (use parts: u = x, du = dx; $dv = e^{-x} dx$, $v = -e^{-x}$) = $\lim_{b \to \infty} -xe^{-x} \Big|_{1}^{b} + \int_{1}^{b} e^{-x} dx = \lim_{b \to \infty} -xe^{-x} e^{-x} \Big|_{1}^{b} = \pi dx$ $\lim_{b\to\infty} (-b/e^b) - (1/e^b) - (-1/e - 1/e) = 2/e$, so $\int_{-\infty}^{\infty} xe^{-x} dx$ converges.
- 9. $\sum 2/(\sqrt{n+1})$ diverges by LCT: $\lim_{n\to\infty} (1/\sqrt{n})/(2/\sqrt{n+1})$ = $\lim_{n\to\infty} (\sqrt{n}+1)/2\sqrt{n} = \lim_{n\to\infty} (1+1/\sqrt{n})/2 = 1/2 = L.$ (part 1 of test applies). Since $\sum 1/\sqrt{n} = \sum 1/n^{1/2}$ is a divergent p-series.

- 10. ∑ cos(nn)/n converges by AST.
- 11. $\sum n/\ln(n) \frac{\text{diverges}}{\text{diverges}}$ by TD: $\lim_{n\to\infty} n/\ln(n) = \lim_{n\to\infty} 1/(1/n) = \lim_{n\to\infty} n = \infty = 0$.
- 12. $\sum 1/\sqrt{n^2+2}$ diverges by LCT: $\lim_{n\to\infty} (1/n)/(1/\sqrt{n^2+2}) = \lim_{n\to\infty} \sqrt{n^2+2}/n = \lim_{n\to\infty} \sqrt{n^2+2}$

 $\lim_{n\to\infty} \sqrt{1+2/n^2}/1 = 1 = L$. (part 1 of test applies). $\sum 1/n$ is divergent (harmonic series).

- 13. $\sum_{n=0}^{\infty} (-1)^n / \sqrt{n^2 1}$ converges by AST.
- 14. $\sum (\sin^4 n/3)^n \cos n \sqrt{(1/3)^n}$ converges by BCT: $(\sin^4 n/3)^n 4 (1/3)^n$ and $\sum (1/3)^n \cos n \sqrt{(1/3)^n}$ (geometric series |1/3| < 1)
- 15. $\sum \ln(n)/n \frac{diverges}{diverges}$ by iT: $\int_{1}^{\infty} (\ln x/x) (dx) \frac{dx}{dx} = \ln x du = dx/x = dx/x$ $\lim_{b \to \infty} \int_0^b u du = \lim_{b \to \infty} (1/2)u^2|_0^b = \lim_{b \to \infty} (1/2)b^2 = \infty$, so $\int_1^\infty (\ln x/x)(dx) diverges$.
- 16. $\sum_{n\to\infty} 1/\sqrt[3]{n^4-2}$ converges by LCT: $\lim_{n\to\infty} (1/n^4/3)/(1/\sqrt[3]{n^4-2}) = \lim_{n\to\infty} \sqrt[3]{n^4-2}/n^4/3$ = $\lim_{n \to \infty} (\sqrt[6]{1-2/n^4})/1 = 1 = L$. (Part 1 of test applies)
- 17. $\sum (3n^4 + 5n^3 + 2)/(n^2 1)(n^2 + 1) = \sum (3n^4 + 5n^3 + 2)/(n^4 1)$ diverges by TD: $\lim_{n\to\infty} (3n^{4}+5n^{3}+2)/(n^{4}-1) = \lim_{n\to\infty} (3+5/n+2/n^{4})/(1-1/n^{4}) = 3 = 0.$
- 18. $\sum_{n=1}^{\infty} (1/2 + 1/n)^n$ converges by ROOT.

Part III:

- 1. $\sum (x-2)^n/n^2$; $\rho = \lim_{n\to\infty} ((|x-2|)^{n+1}/(n+1)^2) \times (n^2/|x-2|^n)$ goes to |x-2| as n approaches $\infty \rightarrow$ absolute convergence for $1 \in X \in \mathcal{B}$. Series also converges absolutely at endpoints x=1 and x=3.
- 2. $\sum x^{2n-1}/(2n-1)!$; $\rho = \lim_{n \to \infty} (|x|^{2n+1})/(2n+1)! \times (2n-1)!/|x|^{2n-1}$ goes to 0 as n approaches ∞ → absolute convergence for all x.